• Title/Summary/Keyword: Intake manifold

Search Result 144, Processing Time 0.024 seconds

Effect of Stroke Changes on the In-Cylinder Flow Field in a Four-Valve SI Engines (Stroke변화가 Four-Valve SI 엔진 실린더내 유동장에 미치는 영향)

  • 유성출
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.1-8
    • /
    • 2001
  • The flow field inside a cylinder of four-valve Sl engine was investigated quantitatively using a three-dimensional Laser Doppler Velocimetry system, to determine how stroke changes affect the flow field. The purpose of this work was to develop quantitative methods which correlate in-cylinder flows to engine performance. For this study, the sane intake manifold, engine head, cylinder, and the piston were used to examine the flow characteristics in different strokes. Quantification of the flow field was done by calculating three major parameters which are believed to adequately characterize in cylinder motion. These quantities were TKE, tumble and swirl ratios. The LDV results reveal that flow patterns are similar, the flow velocities scale with piston speed but another parameters such as TKE, and tumble and swirl numbers are not the same for different stroke systems.

  • PDF

Combustion and Emission Characteristics of Premixed Charge Compression Ignition Diesel Engine (예혼합 압축 착화 디젤 엔진의 연소 및 배기 특성)

  • Heo, Seong-Geun;Kim, Dac-Sik;Lee, Chang-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.187-192
    • /
    • 2001
  • A homogeneous premixed charge compression ignition engine is experimentally investigated for the reduction of exhaust emissions in diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentration of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC and CO emissions were increased with the increase of premixed ratio. The combustion characteristics of premixed charged diesel engine such as the power output, the rate of heat release, and the other characteristics are discussed.

  • PDF

Computer Simulation of Fuel States and Spark Timing in Engine Model (엔진모델에서의 연료상태와 점화시기의 컴퓨터 해석)

  • Lee, Deog-Kyoo;Kim, You-Nam;Park, Hee-Chul;Woo, Kwang-Bang
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.89-93
    • /
    • 1989
  • In this paper, a mathematical engine model based on the actual engine operation is formulated to be adapted for the evalution and development of engine control system. In the model the classification of fuel paticle siza is considered. The model is simulated through the mathematical interpretation of intake manifold in the rapidly-accerated state. The spark-timing is analyzed with respect to engine r.p.m. The result shows that the model behaves similar performance to the actual engine operation and the spark-timing is very important to the characterization of engine r.p.m..

  • PDF

Engine Idle Speed Control Using Nonlinear Sliding Mode Controller and Observer (비선형 슬라이딩 모드 제어기 및 관측기를 이용한 엔진 공회전 제어)

  • 오소력;최재원;김종식
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.2
    • /
    • pp.151-157
    • /
    • 1999
  • In this paper, an integrated nonlinear sliding mode observer and controller has been designed in order to control of an automotive engine idle speed. The primary objective of the engine idle speed control is to maintain the desired engine idle speed despite of various torque disturbances via estimating air mass flow at the location of the injector in intake manifold by using a sliding mode observer. Simulation results show that the case where both throttle angle and ignition time are used as control inputs outperforms the case where just only throttle angle is used as a control input.

  • PDF

A Study on Lean Limit and Combustion Characteristics of Hydrogen Supplemented Gasoline Engine (수소첨가 가솔린기관의 희박한계 및 희박연소특성에 관한 연구)

  • Cho, Tae Hee;Kim, Chang Hyun;Lee, Jong Tai
    • Journal of Hydrogen and New Energy
    • /
    • v.6 no.1
    • /
    • pp.23-34
    • /
    • 1995
  • In order to realize the ultra lean burn, the method of hydrogen supplement in gasoline engine has been examined and analyzed. A small quantity of hydrogen gas was supplied and mixed with gasoline fuel in the intake manifold. As the results, lean limit was extended to fuel-air equivalence ratio 0.35 which normal combustion was impossible by gasoline fuel. The NO and CO were remarkably decreased, and thermal efficiency and torque were increased. It was also found that by considering cycle variation, emission characteristics, torque and thermal efficiency, suitable operate region of hydrogen supplemented gasoline engine was equivalence ratio 0.5.

  • PDF

Dyamic Modeling and Analysis of Air Supply System for Vehicular PEM Fuel Cell (고분자 전해질형 연료전지 자동차의 급기 시스템의 동적 모델링 및 분석)

  • Jang, HyunTak
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.3
    • /
    • pp.175-186
    • /
    • 2004
  • In this paper, we developed the dynamic model of a fuel cell system suitable for controller design and system operation. The transient phenomena captured in the model include the flow characteristics and inertia dynamics of the compressor, the intake manifold filling dynamics, oxygen partial pressures and membrane humidity on the fuel cell voltage. In the simulations, we paid attention to the transient behavior of stack voltage and compressor pressure, stoichiometric ratio. Simulation results are presented to demonstrate the model capability. For load current following, stack voltage dynamic characteristics are plotted to understand the Electro-chemistry involved with the fuel cell system. Compressor pressure and stoichiometric ratio are strongly coupled, and independent parameters may interfere with each other, dynamic response, undershoot and overshoot.

Fundamental Study on Liquid Phase LPG Injection System for Heavy-Duty Engine (I) (대형엔진용 액상분사식 LPG 연료공급 방식에 대한 기초연구 (1))

  • 김창업;오승묵;강건용
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.85-91
    • /
    • 2001
  • LPG has been well known as a clean alternative fuel for vehicles. As a fundamental study on liquid phase LPG injection (hereafter LPLI) system application to heavy-duty engine, engine output and combustion performance were investigated with various operating conditions using a single cylinder engine equipped with the LPLI system. Experimental results revealed that no problems were occurred in application of the LPG fuel to heavy-duty engine, and that volumetric efficiency and engine output, by 10% approximately, were increased with the LPLI system. It was resulted from the decrease of the intake manifold temperature through liquid phase LPG fuel injection. These results provided an advantage in the decrease of the exhaust gas temperature, in the control of knocking phenomena, spark timing and compression ratio. The LPLI engine could normally operated under $\lambda$=1.5 or EGR 30% condition. The optimized swirl ratio for the heavy duty LPG engine was found around R_s$ = 2.0.

  • PDF

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine with EGR System (EGR율에 따른 예혼합 압축 착화 디젤 엔진의 연소 특성)

  • 이창식;이기형;김대식;허성근
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.66-72
    • /
    • 2002
  • A premixed charge compression ignition engine is experimentally investigated for the reduction of NOx and smoke emissions from diesel engines. In this study, the premixed fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentrations of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. But HC emission was increased with the increase of premixed ratio. Also, when EGR system was applied to the PCCI diesel engine, the effect of EGR rate on the combustion characteristics and the exhaust gas emissions was discussed.

Study on the prediction of performance and emission of a 4-cylinder 4-stroke cycle spark ignition engine (4기통 4사이클 스파크 점화기관의 성능 및 배기조성 예측에 관한 연구)

  • 유병철;최영돈;윤강식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.39-56
    • /
    • 1988
  • In this study, the computer program was developed to predict the engine performances and exhaust emissions of a 4-cylinder 4-stroke cycle ignition engine including intake and exhaust system. The simulation models applied to each process were as follows. For the combustion process, two zone model which requires only one empirical constant was applied, and for the gas exchange process, the method of characteristics that allows the calculations of the time variation and spatial variation of properties along the pipes was used. Constant pressure perfect mixing model was applied to take into account of the interaction at manifold branches. To predict exhaust emissions, twelve chemical species were considered to be present in combustion products. These species were calculated through equilibrium thermodynamics and kinetic theory. The empirical constants reduced to least number as possible were determined through the comparison with the experimental indicator diagram of one particular operating condition and these constants were applied to other operating conditions. The predicted performances and emissions were compared with the experimental results over the wide range of operating conditions.

  • PDF

Combustion Characteristics of Premixed Charge Compression Ignition Diesel Engine (예혼합 압축 착화 디젤 엔진의 연소 특성)

  • 이창식;이기형;김대식;장시웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.9-14
    • /
    • 2002
  • A homogeneous premixed charge compression ignition engine has been experimentally studied far the reduction exhaust emissions of diesel engines. In this study, the gasoline fuel is injected into the intake manifold to from homogeneous pre-mixture in the combustion chamber and then this pre-mixture is ignited by small amount of diesel fuel directly injected into the cylinder. In the premixed charge compression ignition engine, NOx and smoke concentration of the exhaust emissions were reduced simultaneously as compared with the conventional diesel engine. The combustion characteristics of premixed charged diesel engine such as the power output, the rate of heat release, and the other characteristics are discussed.