• 제목/요약/키워드: Intake Air Pressure

검색결과 198건 처리시간 0.029초

디젤기관에 대한 앳킨슨사이클 구성과 사이클의 열역학적 해석에 관한 연구 (A Study on the Composition of Atkinson Cycle and Thermodynamically Analysis for a Diesel Engine)

  • 김철수;정영관;장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.185-193
    • /
    • 2005
  • The present study composed a diesel-atkinson cycle of high expansion as a method of achieving high efficiency in diesel cycle engines. It also interpreted the cycle engine thermodynamically analysis to determine the possibility of the improvement of thermal efficiency and clarified the characteristics of several factors . According to the result of theoretical analysis, heat efficiency was highest when expansion-compression ratio Reど:1. In addition. diesel engines with high apparent compression ratio had higher expansion-compression ratio than otto engines and consequently their effect of high expansion was high. which in turn enhanced thermal efficiency. When the atkinson cycle was implemented in a real diesel engine by applying the miller cycle through the variation of the closing time of the intake valve, the effective compression ratio and the quantify of intake air decreased and as a result, the effect of high expansion was not observed. Accordingly. the atkinson cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case. heat efficiency increased by $4.1\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle. heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged Pressure equipment. Then a diesel-atkinson cycle engine is realized.

배기열(排氣熱) 회수용(回收用) 축류(軸流) 회전형(回轉形) 현열교환기(顯熱交換器)의 최적설계(最適設計)에 관한 연구(硏究) (A Study on the Optimum Design of Axial Rotary Sensible Heat Exchanger for the Heat Recovery of Exhaust Gas)

  • 최영돈;박상동;우정선;태춘섭
    • 설비공학논문집
    • /
    • 제3권2호
    • /
    • pp.131-141
    • /
    • 1991
  • A method of optimum design of an axial rotary sensible heat exchanger for the heat recovery of exhaust gas from the air conditioning space was developed in consideration of economics of investment cost and profit according to the installation of heat exchangers. Leakage rate of exhaust gas was calculated and the correlation for the pressure drop due to leakage of exhaust gas was proposed. Heat transfer between the matrix and exhaust and intake gas was analysed to calculate the effectiveness of heat exchanger, which was used for the optimum design of rotary heat exchanger. The results show that optimum rotational speed increases as the length of rotor increases and there exists optimum NTU which maximizes the gain of total cost according to the installation of rotary heat exchanger.

  • PDF

밸브 타이밍 지각과 과급에 의한 흡기관 분사식 수소기관의 고성능 실현 (The Realization of High Performance in a Hydrogen-Fueled Engine with External Mixture by Retarding Valve Timing and Super Charging)

  • 이광주;허상훈;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제20권6호
    • /
    • pp.464-470
    • /
    • 2009
  • In order to analysis the possibility of high expansion and performance without backfire in a hydrogenfueled engine using external mixture injection, combustion characteristics and performance enhancement were analyzed in terms of retarding valve timing and increasing the boosting pressure. As the results, it was found that thermal efficiency increased by retarding intake valve timing with the same level of supplied energy is over 6.6% by the effect of high expansion including effect of combustion enhancement due to supercharging. It was also shown that the achievement of high power (equal to that of a gasoline engine), low brake specific fuel consumption and low emission (NOx of less than 16 ppm) without backfire in a hydrogen-fueled engine is possible around a boosting pressure of 1.5 bar, intake valve opening time of TDC and $\Phi$=0.35 in fuel-air equivalence ratio.

막오염에 의한 압축기 성능 저하가 발전용 가스터빈 설계점 성능에 미치는 영향에 관한 연구 (Performance degradation due to compressor fouling of an industrial gas turbine operating at design point condition)

  • 서진식;손정락;김재환;김동섭;노승탁
    • 한국유체기계학회 논문집
    • /
    • 제6권3호
    • /
    • pp.36-43
    • /
    • 2003
  • Operating performance of industrial gas turbines in combined cycle power plants depends upon atmospheric conditions. Compressor fouling caused by airborne particles in the atmosphere and their adhesions on compressor blades is one of critical phenomena related to the performance degradation of industrial gas turbines. Compressor fouling provokes increase of pressure loss in inlet duct, decrease of mass flow rate of intake air and decrease of compressor stage efficiency. In this study, impacts of compressor fouling on the performance of an industrial gas turbine operating at design point condition are investigated analytically. As results, it is found that the reduction of produced power with decreased mass flow rate of intake air caused by narrowed flow area by the adhesion of airborne particles on compressor blades is the most dominant impact on the gas turbine performance by the compressor fouling phenomena.

CFD-based Design and Analysis of the Ventilation of an Electric Generator Model, Validated with Experiments

  • Jamshidi, Hamed;Nilsson, Hakan;Chernoray, Valery
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권2호
    • /
    • pp.113-123
    • /
    • 2015
  • The efficiency of the ventilation system is a key point for durable and reliable electric generators. The design of such system requires a detailed understanding of the air flow in the generator. Computational fluid dynamics (CFD) has the potential to resolve the lack of information in this field. The present work analyses the air flow inside a generator model. The model is designed using a CFD-based approach, and manufactured by taking into consideration the experimental and numerical requirements and limitations. The emphasis is on the possibility to accurately predict and experimentally measure the flow distribution inside the stator channels. A major part of the work is focused on the design of an intake and a fan that gives an evenly distributed flow with a high flow rate. The intake also serves as an accurate flowmeter. Experimental results are presented, of the total volume flow rate, the total pressure and velocity distributions. Steady-state CFD simulations are performed using the FOAM-extend CFD toolbox. The simulations are based on the multiple rotating reference frames method. The results from the frozen rotor and mixing plane rotor-stator coupling approaches are compared. It is shown that the fan design provides a sufficient flow rate for the stator channels, which is not the case without the fan or with a previous fan design. The detailed experimental and numerical results show an excellent agreement, proving that the results reliable.

과도수리현상 해석과 실증을 통한 펌프장 안정성 확보방안 (A Safety Plan for the Pumping Station by Hydraulic Transient Analysis and Demonstration)

  • 라병필;김진만;이동근;박종호;김경엽
    • 한국유체기계학회 논문집
    • /
    • 제8권5호
    • /
    • pp.22-28
    • /
    • 2005
  • As the water supply facilities are recently getting larger, the domestic waterworks become multi-regional water supply system. Large water supply facilities generally consist of the intake pumping station, water treatment plant and water supply/distribution facilities. Although the pumping stations and the pipeline systems are used to pump up water, it often happens pipeline damage and flooding accident by the water hammer. In this paper, the intake pumping station is guaranteed by both the computer simulation and the field test analysis. This study is contributed to the safe operation program for the pumping station in which results of the adjustment on the safety plan of the pumping station, the air valve and the valve closing time.

스파크점화 기관의 성능향상을 위한 회전형 흡배기장치의 개발에 관한 연구 (A Study on Development 9f Rotary Valve for Performance Enhancement in SI Engine)

  • 김치원;윤창식;김유식
    • 한국안전학회지
    • /
    • 제10권3호
    • /
    • pp.11-20
    • /
    • 1995
  • In recent years, the study on the high efficiency of the internal combustion engine has been mainly proceeding. In this study, we developed rotary valve to achieve the improvement of volumetric efficiency and to be simple construction. And then made a comparative analysis between rotary and poppet valve. In this experiment, rotary valve enlarged the flow area of valve port to minimize the resistance of the fluid flow and to flow smoothly in intake and exhaust process. Indeed, valve timing was controlled properly lest positive pressure in exhaust process should affect intake process. Motoring and firing experiments were using engine speed and air-fuel ratio as the principle parameter and the full opening of throttle valve and minimum spark advance for best torque (MBT) as engine operating variables.

  • PDF

화력발전소 흡입필터 세정용 급속 배기 밸브의 개발 (Development of the Quick Exhaust Valve to Blowing the Intake Filter for the Thermal Power Plant)

  • 정찬세;이형욱;정영만;이창돈;양순용
    • 한국생산제조학회지
    • /
    • 제19권4호
    • /
    • pp.548-552
    • /
    • 2010
  • The air suction filter of the power plant decrease the dust and impurities of suction air that reduce the life and efficiency of the boiler. The suction efficiency of the air filter falls with the dust and impurities when the time of use comes to be long. Therefore, the various contaminant of the filter must remove periodically. This paper presents a developed quick exhaust valve to use in the thermo-electric power plant. to removing contaminants on the filter, the blowing is done shortly by air pressure. The Air flowed out to the out side from the inside of the filter. The performance test of the developed valve is done by making a test-bench according to JIS and KS standards. The efficiency is found higher than the existing related valve.

저속 디젤기관에서 흡기밸브 닫힘시기 지연시 고팽창 실현을 위한 열효율 특성 (A Chancteristic of Thermal Efficiency in Order to High Expansion Realization with a Retard of Intake Valve Closing Time in the Low Speed Diesel Engine)

  • 장태익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.42-49
    • /
    • 2006
  • In this research. the diesel cycle was thermodynamically interpreted to evaluate the possibility of high efficiency by converting diesel engines to the high expansion diesel cycle, and general cycle features were analyzed after comparing these two cycles. Based on these analyses. an experimental single cylinder a long stroke with high expansion-diesel engine. of which S/B ratio was more than 3, was manufactured. After evaluating the base engine through basic experiments, a diesel engine was converted into the high expansion diesel engine by establish VCR device and VVT system Accordingly, the high expansion diesel cycle can be implemented when the quantity of intake air is compensated by supercharge and the effective compression ratio is maintained at its initial level through the reduction of the clearance volume. In this case, heat efficiency increased by $5.0\%$ at the same expansion-compression ratio when the apparent compression ratio was 20 and the fuel cut off ratio was 2. As explained above, when the atkinson cycle was used for diesel cycle, heat efficiency was improved. In order to realize high expansion through retarding the intake value closing time, the engine needs to be equipped with variable valve timing equipment, variable compression ratio equipment and supercharged pressure equipment. Then a high expansion diesel cycle engine is realized.

압축착화 엔진에서 DME-가솔린 혼소 운전 특성에 관한 연구 (Operating Characteristics of Dual-fuel Combustion with DME and Gasoline in a Compression Ignition Engine)

  • 김기현;배충식
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.157-164
    • /
    • 2014
  • Dual fuel combustion strategy with di-methl ether (DME) and gasoline was tested in a compression ignition engine. Characteristics of combustion and emissions were analyzed with the variation of engine operating parameters such as fuel proportion, DME injection timing, intake oxygen concentration, DME injection pressure and so forth. Gasoline was injected into the intake manifold to form the homogeneous mixture with intake charge and DME was injected directly into the cylinder at the late compression stroke to ignite the homogeneous gasoline-air mixture. Dual fuel combustion strategy was advantageous in achievement of higher thermal efficiency and low NOx emission compared with DME single fuel combustion. Higher thermal efficiency was attributed to the lower heat tranfer loss from the decreased combustion temperature since the amount of lean premixed combustion was increased with the larger amount of gasoline proportion. Lower NOx emissions were also possible by lowering the combustion temperature.