보험금 예측은 보험사의 리스크 관리와 재무 건전성 유지를 위한 핵심 과제 중 하나이다. 정확한 보험금 예측을 통해 보험사는 적정한 보험료를 책정하고, 예상 외의 손실을 줄이며, 고객 서비스의 질을 향상시킬 수 있다. 본 연구에서는 앙상블 러닝 기법을 적용하여 보험금 예측 모델의 성능을 향상시키고자 한다. 랜덤 포레스트(Random Forest), 그래디언트 부스팅 머신(Gradient Boosting Machine, GBM), XGBoost, Stacking, 그리고 제안한 동적 가중치 할당 모델(Dynamic Weighted Ensemble, DWE) 모델을 사용하여 예측 성능을 비교 분석하였다. 모델의 성능 평가는 평균 절대 오차(MAE), 평균 제곱근 오차(MSE), 결정 계수(R2) 등을 사용하여 수행되었다. 실험 결과, 동적 가중치 할당 모델이 평가 지표에서 가장 우수한 성능을 보였으며, 이는 랜덤 포레스트와 XGBoost, LR, LightGBM의 예측 결과를 결합하여 최적의 예측 성능을 도출한 결과이다. 본 연구는 앙상블 러닝 기법이 보험금 예측의 정확성을 높이는 데 효과적임을 입증하며, 보험업계에서 인공지능 기반 예측 모델의 활용 가능성을 제시한다.
More than 1 million automobile insurance repairs occur per year globally, and the related repair costs add up to astronomical amounts. Insurance companies and repair shops are spending a great deal of money on manpower every year to claim reasonable insurance repair costs. For this reason, promptly predicting insurance claims for vehicles in accidents can help reduce social costs related to auto insurance. Several recent studies have been conducted in auto insurance repair prediction using variables such as photos of vehicle damage. We propose a new model that reflects auto insurance repair characteristics to predict auto insurance repair claims through an association rule method that combines gradient descent and location information. This method searches for the appropriate number of rules by applying the gradient descent method to results generated by association rules and eventually extracting main rules with a distance filter that reflects automobile part location information to find items suitable for insurance repair claims. According to our results, predictive performance could be improved by applying the rule set extracted by the proposed method. Therefore, a model combining the gradient descent method and a location-based association rule method is suitable for predicting auto insurance repair claims.
In recent years, the accidents in construction projects are continuously increasing due to their complexity and variety. However, few studies have been conducted regarding the risk prediction model and the database of risk assessment in construction projects. To address of these issues, the objective of this study is to analyze the accident causes by using insured claim payouts of insurance companies. First, the descriptive analysis of accidents causes is conducted according to scheduling rate, season, and total construction costs. Second, the correlation analysis is conducted between accidents causes and total construction costs. In the future, the risk assessment model can be developed to quantify the accident causes in construction projects to estimate claim payouts of insurance companies.
상대오차를 이용한 예측법은 상대오차(혹은 퍼센트오차)가 중요시되는 분야, 특히 계량경제학이나 소프트웨어 엔지니어링, 또는 정부기관 공식통계 부분에서 기존 예측방법 외에 선호되는 예측방법이다. 그 동안 상대오차를 이용한 예측법은 선형 혹은 비선형 회귀분석 뿐 아니라, 커널회귀를 이용한 비모수 회귀모형, 그리고 정상시계열분석에 이르기까지 그 범위가 확장되어 왔다. 그러나, 지금까지의 분석은 고정효과(fixed effect)만을 고려한 것이어서 임의효과(random effect)에 관한 상대오차 예측법에 대한 확장이 필요하였다. 본 논문의 목적은 상대오차예측법을 일반화선형혼합모형(GLMM)에 속한 감마회귀(gamma regression), 로그정규회귀(lognormal regression), 그리고 역가우스회귀(inverse gaussian regression)의 패널자료(panel data)에 적용시키는데 있다. 이를 위해 실제 자동차 보험회사의 손해액 자료를 사용하였고, 최량예측량과 최량상대오차예측량을 각각 적용-비교해 보았다.
Kim, Ji-Myong;Park, Young Jun;Kim, Young-Jae;Yu, YeongJin
국제학술발표논문집
/
The 6th International Conference on Construction Engineering and Project Management
/
pp.192-194
/
2015
The growing size and complex process in construction project recently leads to increase risk and the losses as well. Even though researchers have identified the major risk indicators, there is lack of comprehensive and quantitative research for identifying the relationship between the risk indicators and economic losses associated with construction projects. To address this shortage of research, this study defines risk indicators and create a framework to assess the influence of economic losses from the indicators. An insurance company's claim payout record was accepted as the dependent variable to reflect the real economic losses. Based on the claims, we categorized the causes and results of accidents. To establish framework, built environment vulnerability indicators and geographical vulnerability indicators were employed as the risk indicators. A Pearson correlation analysis was adopted to validate the relationship with loss ratio and risk indicators. Consequently, this framework and its results may offer significant references for under writers of insurance companies and loss prevention activities.
유방암 관련 기존 AI 연구는 보조적인 진단 예측이나 임상적 요인에 따른 진료 결과를 예측하는 주제가 많았다. 또한 연구기관의 코호트 자료나 일부 환자 자료를 이용하는 경우가 대부분이었다. 본 논문에서는 건강보험심사평가원이 보유하고 있는 전 국민 유방암 환자의 전수 데이터를 활용하여 유방암 환자의 40~50대와 다른 연령대 간의 생존 여부 예측과 생존 여부에 미치는 요인의 차이점을 분석했다. 그 결과, 환자들의 생존 여부 예측 정밀도는 40~50대가 평균 0.93으로 60~80대 0.86 보다 높았으며, 요인에 있어서도 40~50대는 치료횟수(46%)가, 60~80대는 나이(32%)의 변수 중요도가 제일 높았다. 기존 연구와 성능 비교 결과, 평균 정밀도가 0.90으로 기존 논문의 정밀도 0.81보다 높았다. 적용 알고리즘별 성능 비교 결과, 의사결정나무(Decision Tree), 랜덤포레스트(Random Forest) 및 그래디언트부스팅(Gradient Boosting)의 전체 평균 정밀도는 0.90, 재현율은 1.0으로 연령대 그룹 내에서 동일하였으며, 다층퍼셉트론(Multi-Layer Perceptron)의 정밀도는 0.89, 재현율은 1.0 이었다. 심평원의 전 국민 심사청구 빅데이터 가치 활용을 제고하기 위해 비전문가용 머신러닝 자동화(Auto ML) 도구를 사용한 더 많은 연구가 진행되기를 바란다.
한국 건설업의 재해율은 매년 증가하고 있는 추세이며 다른 산업에 비해 월등히 높다. 이는 국가차원에서 재해예방을 위해 수행하는 안전활동들이 건설산업의 재해율 감소에는 효과를 보이지 못한다는 것을 의미한다. 이러한 문제점을 해결하기 위해서는, 인명사고 예측모델에 대한 프레임이 구축되어야 하며, 인명사고 발생형태에 대한 정량화 연구가 필요하다. 이에, 본 연구는 인명사고 발생형태의 불확실성을 정량화하고 몬테카를로 시뮬레이션을 통해 다양한 환경에서 어떻게 변화하는지 예측하고자 한다. 이를 위하여 첫째, 선행연구 고찰을 통해 인명사고 발생형태를 정의한다. 둘째, 14년 간 국내 건설현장에서 발생한 인명사고 및 보상지급액 데이터를 수집한다. 셋째, 발생형태별 특성을 파악하기 위해 수집된 데이터를 토대로 기술통계분석을 실시한다. 넷째, 인명사고 발생형태를 정량적으로 분석하기 위하여 발생형태별 사고 발생 확률과 보상지급액의 모수를 추정한다. 마지막으로 추정된 모집단을 토대로 몬테카를로 시뮬레이션을 실시하여 인명사고 발생형태별 분포 특징을 분석한다. 본 연구의 결과는 향후 건설현장 안전관리 체크리스트 개발 및 인명사고 예측 모델 개발의 참고 자료로 활용될 것으로 기대된다.
Objectives : An appropriate sampling strategy for estimating an epidemiologic volume of diabetes has been evaluated through a simulation. Methods : We analyzed about 250 million medical insurance claims data submitted to the Health Insurance Review & Assessment Service with diabetes as principal or subsequent diagnoses, more than or equal to once per year, in 2003. The database was re-constructed to a 'patient-hospital profile' that had 3,676,164 cases, and then to a 'patient profile' that consisted of 2,412,082 observations. The patient profile data was then used to test the validity of a proposed sampling frame and methods of sampling to develop diabetic-related epidemiologic indices. Results : Simulation study showed that a use of a stratified two-stage cluster sampling design with a total sample size of 4,000 will provide an estimate of 57.04%(95% prediction range, 49.83 - 64.24%) for a treatment prescription rate of diabetes. The proposed sampling design consists, at first, stratifying the area of the nation into "metropolitan/city/county" and the types of hospital into "tertiary/secondary/primary/clinic" with a proportion of 5:10:10:75. Hospitals were then randomly selected within the strata as a primary sampling unit, followed by a random selection of patients within the hospitals as a secondly sampling unit. The difference between the estimate and the parameter value was projected to be less than 0.3%. Conclusions : The sampling scheme proposed will be applied to a subsequent nationwide field survey not only for estimating the epidemiologic volume of diabetes but also for assessing the present status of nationwide diabetes control.
The number of human accidents in the construction industry is increasing every year, and it constitute the highest percentage among industry. This means that activities performed to prevent safety accidents in the country are not efficient to reduce the rate of accidents in the construction industry. In order to solve this issue, research has been conducted from various perspectives. But, research regarding to quantification model of human accidents is insufficient. the objective of this study is to conduct a basic study on quantification model development of human accidents. To achieve the objective, first, Cause of accident is defined the through literature review. Second, a basic statistic analysis is conducted to determine the characteristics of the accident causes. Third, the analysis is conducted after dividing into four categories : accumulate rate, season, total construction cost, and location. In the future, this study can be used as a reference for developing the safety management checklist for safety management in construction site and development of prediction models of human accident.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.