• Title/Summary/Keyword: Insulin-like growth factor binding protein-2

Search Result 79, Processing Time 0.026 seconds

Changes of insulin like growth factor-I, IGF-I carrier protein in streptozotocin-induced diabetic rat (Streptozotocin에 의해 유도된 당뇨쥐의 IGF-I, IGFBPs 및 IGF-I carrier protein의 변화)

  • Heo, Young-ran;Jin, Song-jun;Kim, Jin-shang;Kang, Chang-won
    • Korean Journal of Veterinary Research
    • /
    • v.40 no.3
    • /
    • pp.489-496
    • /
    • 2000
  • This study was conducted to investigate the effects of streptozotocin-induced (STZ) diabetes on insulin-like growth factor-I (IGF-I), insulin-like growth factor binding proteins (IGFBPs), and IGF-I carrier proteins in serum, liver, and kidney. The levels of total and free IGF-I were measured by radioimmunoassay (RIA). The patterns of IGFBPs were determined by western ligand blotting (WLB) analysis. The profiles of IGF-I carrier proteins in serum were determined by column chromatography. The levels of total and free IGF-I in serum were lower in STZ-induced diabetic rat than normal rat (p<0.01). Similarly, the levels of total IGF-I in liver was lowered in STZ-induced diabetic rats. On the other hand, the levels of total IGF-I in kidney were increased in STZ-induced diabetic rats compared with normal rats (p<0.01). In serum and liver from STZ-induced diabetic rats, the amount of IGFBP-3 was decreased and the amount of IGFBP-2 was increased compared with normal rats. There was a not difference in amount of IGFBP-4 in serum between STZ-induced diabetic rats and normal rats. The serums of normal rats have higher 150kDa carrier proteins than in STZ-induced diabetic rats, whereas, most of 50kDa carrier proteins were found in STZ-induced diabetic rats. These results demonstrate that in STZ-induced diabetic rats, IGF-I/IGFBPs system that included functional bioactivity was changed in serum as well as tissues, and these changes may play an important role in pathogenesis of diabetes.

  • PDF

Catch up growth in children born small for gestational age by corrected growth curve (부당 경량아로 출생한 소아들에서 교정성장곡선을 이용한 따라잡기 성장에 대한 연구)

  • Jung, Myung Ki;Song, Ji Eun;Yang, Seung;Hwang, Il Tae;Lee, Hae Ran
    • Clinical and Experimental Pediatrics
    • /
    • v.52 no.9
    • /
    • pp.984-990
    • /
    • 2009
  • Purpose : Being small for gestational age (SGA) is a risk factor of short stature in children. Genetic background such as mid-parental height (MPH) is known to influence growth of children born SGA. We studied the relationship between growth of children born SGA and MPH and studied the effects of insulin-like growth factor (IGF-I) and insulin-like growth factor binding protein 3 (IGFBP-3) on postnatal growth in children born SGA according to MPH. Methods : Forty-nine neonates born SGA were included in this study. We defined corrected height standard deviation score (cHtSDS) by modified height SDS (HtSDS) based on their MPH. We categorized subjects into group 1 consisting of children with cHtSDS ${\geq}0$ (n=35) and group 2 consisting of children with cHtSDS <0 (n=14), and compared IGF-I and IGFBP-3 between the two groups. Results : The HtSDSs and cHtSDSs in groups 1 and 2 were $0.06{\pm}1.05$ vs. $-0.95{\pm}0.85$ (P=0.000) and $0.78{\pm}0.93$ vs. $-0.46{\pm}0.67$ (P=0.000), respectively. IGF-I SDS was higher in group 1 than in group 2 ($2.82{\pm}3.69$ vs. $0.23{\pm}2.42$, P=0.012). Total cHtSDS ($0.42{\pm}1.03$) was significantly higher than HtSDS ($-0.22{\pm}1.10$) (P=0.000). Conclusion : Our results show that cHtSDS differs significantly from HtSDS. Growth assessment by standardized growth curve does not uniformly show effects of genetic factors. A more accurate assessment of growth uses a personalized corrected growth curve that considers the genetic factor measured by MPH.

Insulin-like Growth Factor-I Induces FABPpm Expression in C2C12 Myotubes (C2C12 myotube에서 insulin-like growth factor-I 이 FABPpm과 FAT/CD36 발현에 미치는 영향)

  • Kim, Hye Jin;Yoon, Hae Min;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.25 no.10
    • /
    • pp.1098-1102
    • /
    • 2015
  • FABPpm (plasma membrane-bound fatty acid binding protein ) is highly expressed in skeletal muscle. The principal role of this protein is modulating fatty acid uptake and metabolism. The influence of insulin-like growth factor-I (IGF-I), which is a major regulator of skeletal muscle cells, on FABPpm in skeletal muscle cells has not been investigated. To determine the effect of IGF-I on the expression of FABPpm, differentiated C2C12 murine skeletal muscle cells were treated with 20 ng/ml of IGF-I for different times. IGF-I increased the expression of FABPpm in a time-dependent manner. The mRNA level of FABPpm was measured by real-time quantitative PCR to determine whether the IGF-1-induced induction of FABPpm was regulated pretranslationally. The IGF-I treatment resulted in very rapid induction of the FABPpm mRNA transcript in the C2C12 myotubes. After 24 and 48 hr of the IGF-I treatment, FABPpm mRNA increased 130 and 179%, respectively. The increase in the protein expression returned to control levels after 72 hr of the IGF-I treatment, suggesting that IGF-1 regulated the FABPpm gene pretranslationally in skeletal muscle cells. This is the first evidence that IGF-I has a modulatory effect on the expression of FABPpm. In conclusion, IGF-I induced rapid transcriptional modification of the FABPpm gene in C2C12 skeletal muscle cells and exerted modulatory effects on FABPpm.

Insulin-like Growth Factor-I Regulates the FAT/CD36 Expression in C2C12 Skeletal Muscle Cells (C2C12 골격근 세포에서 FAT/CD36 발현 조절에 있어 Insulin-like growth factor-I이 미치는 영향)

  • Kim, Hye Jin;Yoon, Hae Min;Kim, Tae Young;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.758-763
    • /
    • 2016
  • Fatty acid transporters are key mediators of skeletal muscle lipid metabolism. Several protein groups have been implicated in cellular long-chain fatty acid uptake or oxidation, including fatty acid transporter proteins (FATPs), the plasma membrane fatty acid-binding protein (FABPpm), and the fatty acid translocase (FAT/CD36). FAT/CD36 is highly expressed in skeletal muscle and known to be regulated by various factors such as exercise and hormones. Insulin-like growth factor-I (IGF-I) is a well-known regulator of skeletal muscle cells. However, it has not been studied whether there is any interaction between IGF-I and FAT/CD36 in skeletal muscle cells. In this study, the effects of IGF-I treatment on FAT/CD36 induction were examined. Differentiated C2C12 cells were treated with 20 ng/ml of IGF-I at different time points. Treatment of C2C12 cells with IGF-I resulted in increased FAT/CD36 mRNA and protein expression. After 24 and 48 hr of IGF-I treatment, FAT/CD36 mRNA increased 89% and 24% respectively. The increase of both proteins returned to the control level after 72 hr of IGF-I treatment, suggesting that the FAT/CD36 gene is regulated pretranslationally by IGF-I in skeletal muscle cells. These results suggest that IGF-I can regulate the expression of FAT/CD36 in skeletal muscle cells. In conclusion, IGF-I induces a rapid transcriptional modification of the FAT/CD36 gene in C2C12 skeletal muscle cells and has modulating effects on fatty acid uptake proteins as well as oxidative proteins.

Randomized, Double-blind, and Placebo-controlled Human Trial to Evaluate the Efficacy and Safety of Allium Fistulosum L. Root Extract on Improvement of Child Height Growth: Study Protocol (총백추출물의 어린이 키 성장에 대한 유효성 및 안전성을 평가하기 위한 무작위배정, 이중눈가림, 위약 대조 인체적용시험: 인체적용시험 프로토콜)

  • Shim, Soo Bo;Ko, Byoung Seob;Ryuk, Jin Ah;Lee, Jung Hwan;Lee, Ho Bong;Ha, Ki Chan;Kim, Yeung Mi;Lee, Hye Lim
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.35 no.2
    • /
    • pp.11-20
    • /
    • 2021
  • Objectives The purpose of the study is to evaluate the safety of the Allium Fistulosum extract in children and its effectiveness in height growth. Methods This study is randomized, double-blind, placebo-controlled trial. The participants are children between the 3rd and 25th percentiles in height, and between the ages of 5 and 12 years. They are randomly assigned to treatment group or control group. The treatment group will take 5 g (1 g as Allium Fistulosum extract) for 24 weeks, 1 time a day. The control group will take the 5 g (0 g as Allium Fistulosum extract) of placebo for 24 weeks, 1 time a day. The primary outcome is change in height, and the secondary outcomes are growth rate, height standard deviations, Insulin-like growth factor-1 (IGF-1), Insulin-like growth factor binding protein-3 (IGFBP-3), IGF1-1/IGFBP-3 ratio, growth hormone, bone age, osteocalcin, and Z-score for growth. Results This protocol has been approved by the institutional review board (IRB) of Daejeon Korean Medicine Hospital of Daejeon University (IRB No. DJDSKH-20-BM-15), and registered in the Clinical Research Information Service (CRIS) (Registry No. KCT0005981). Conclusions This study will provide clinical information about the effectiveness and safety of Allium Fistulosum extract in children for their growth.

Changes of the growth plate in children: 3-dimensional magnetic resonance imaging analysis

  • Yun, Hyung Ho;Kim, Hyun-Jung;Jeong, Min-Sun;Choi, Yun-Sun;Seo, Ji-Young
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.7
    • /
    • pp.226-230
    • /
    • 2018
  • Purpose: This pilot study assessed changes in the growth plate and growth rates in children during a 6-month period. Methods: The study included 31 healthy children (17 boys, 14 girls) under evaluation for growth retardation. Height, weight, bone age, insulin like growth factor-1 (IGF-1), and insulin like growth factor binding protein 3 (IGF-BP3) were measured at baseline and after 6 months. In addition, the diameter, thickness, and volume of the femoral and tibial growth plates were measured using magnetic resonance imaging. Results: The mean bone age in boys and girls was 11.7 and 10.7 years, respectively. In boys, height (z score) (-0.2 vs. 0.0), weight (z score) (0.8 vs. 1.1), body mass index (BMI) (z score) (1.27 vs. 1.5), IGF-1 (ng/mL) (343.6 vs. 501.8), and IGF-BP3 (ng/mL) (5,088.5 vs. 5,620.0) were significantly higher after 6 months. In girls, height (z score) (-1.0 vs. -0.7), weight (z score) (-0.5 vs. 0.1), BMI (z score) (-0.02 vs. 0.3), IGF-1 (ng/mL) (329.3 vs. 524.6), and IGF-BP3 (ng/mL) (4,644.4 vs. 5,593.6) were also significantly higher after 6 months. In both sexes, the mean diameter and volume of the femoral and tibial growth plates were significantly increased 6 months later. Conclusion: No significant correlation was found between changes in the growth plate and clinical parameters in children with growth retardation in this study, other than correlations of change in femoral diameter with weight and BMI. A larger, long-term study is needed to precisely evaluate the correlation between change in the growth plate and growth.

Effect of Fish Meal Replacement on Insulin-like Growth Factor-I Expression in the Liver and Muscle and Implications for the Growth of Olive Flounder Paralichthys olivaceus (사료의 어분함량대체가 넙치(Paralichthys olivaceus)의 간과 근육 내 인슐린유사성장인자의 발현과 체성장에 미치는 영향)

  • Park, Su-Jin;Moon, Ji-Sung;Seo, Jin-Song;Nam, Taek-Jeong;Lee, Kyeong-Jun;Lim, Sang-Gu;Kim, Kang-Woong;Lee, Bong-Joo;Hur, Sang-Woo;Choi, Youn Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.52 no.2
    • /
    • pp.141-148
    • /
    • 2019
  • This study examined the effect of insulin-like growth factor (IGF)-I expression in the liver and muscle on the growth of Paralichthys olivaceus fed diets low in fish meal. A feeding experiment was conducted at Jeju National University, Jeju Island, Korea. Groups of P. olivaceus (total initial weight: 200 g) were maintained for 20 weeks on one of five experimental diets containing different proportions of fish meal. Diets containing 0%, 20%, 30%, 40%, and 50% fish meal were labeled FM0, FM20, FM30, FM40, and FM50, respectively. Fish growth was observed every 4 weeks during the feeding experiment, and plasma and liver and muscle tissues were sampled. Plasma IGF-I levels were analyzed using an ELISA kit. The mechanism of IGF-I receptor signaling was examined using immunoblotting and reverse transcription-polymerase chain reaction. The greatest total weight increase was observed in the FM30 group. In parallel, plasma levels of IGF-I and IGF-binding protein were highest in the FM30 group, and mRNA and protein expression were also significantly higher in this group. The first step in the IGF-I signaling pathway, tyrosine-phosphorylation checking, occurred smoothly until 20 weeks. These results suggest that a dietary ratio of 30% fish meal best promotes growth in this species. The IGF-I signaling pathway in the liver and muscle is associated with growth in P. olivaceus.

Induction of Apoptosis by IGFBP3 Overexpression in Hepatocellular Carcinoma Cells

  • Han, Jian-Jun;Xue, De-Wen;Han, Qiu-Rong;Liang, Xiao-Hong;Xie, Li;Li, Sheng;Wu, Hui-Yong;Song, Bao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10085-10089
    • /
    • 2015
  • Background: The insulin-like growth factor (IGF) system comprises a group of proteins that play key roles in regulating cell growth, differentiation, and apoptosis in a variety of cellular systems. The aim of this study was to investigate the role of insulin-like growth factor binding protein 3 (IGFBP3) in hepatocellular carcinoma. Materials and Methods: Expression of IGF2, IGFBP3, and PTEN was analyzed by qRT-PCR. Lentivirus vectors were used to overexpress IGFBP3 in hepatocellular carcinoma cell (HCC) lines. The effect of IGFBP3 on proliferation was investigated by MTT and colony formation assays. Results: Expression of IGF2, IGFBP3, and PTEN in several HCC cell lines was lower than in normal cell lines. After 5-aza-2'-deoxycytidine/trichostatin A treatment, significant demethylation of the promoter region of IGFBP3 was observed in HCC cells. Overexpression of IGFBP3 induced apoptosis and reduced colony formation in HUH7 cells. Conclusions: Expression of IGF2, IGFBP3, and PTEN in several HCC cell lines was lower than in normal cell lines. After 5-aza-2'-deoxycytidine/trichostatin A treatment, significant demethylation of the promoter region of IGFBP3 was observed in HCC cells. Overexpression of IGFBP3 induced apoptosis and reduced colony formation in HUH7 cells.

Effect of Supplementing the Diet of Olive Flounder Paralichthys olivaceus with Sea Mustard Undaria pinnatifida Glycoprotein on Growth and the Immune System (사료 내 미역(Undaria pinnatifida) 당단백질의 첨가가 넙치(Paralichthys olivaceus) 치어의 성장 및 면역 증강에 미치는 영향)

  • An, Cheul-Min;Kim, Kang-Woong;Kim, Kyoung-Duck;Kim, Young-Min;Kim, In-Hye;Park, Su-Jin;Choi, Youn Hee;Nam, Taek Jeong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.45 no.5
    • /
    • pp.423-429
    • /
    • 2012
  • This study evaluated the effects of adding sea mustard Undaria pinnatifida glycoprotein to the diet of juvenile olive flounder Paralichthys olivaceus on its growth, and levels of insulin-like growth factor I (IGF-I), IGF binding proteins (IGFBPs), and interleukins. Three experimental diets (U0, U0.5, and U1.0) were formulated that contained different amounts of an extract of U. pinnatifida (0, 0.5, and 1.0%, respectively). Experimental groups were established in triplicate (30 fish/group) and fed for 12 weeks. The experimental group fed 1.0% added U. pinnatifida glycoprotein had the greatest rate of weight gain, which differed significantly from the other experimental groups. SDS-PAGE of the plasma IGF-I and muscle protein showed that the experimental groups taking U. pinnatifida glycoprotein had significantly more IGF-I and a ca. 200 kDa protein, as compared to the control group. In addition, the amount of IGFBP-3 at ca. 43 kDa increased in the group given the U. pinnatifida extract, as compared to the control group. The interluekin-2, -4, -6, and -12 levels paralleled the level of growth factor in the groups given the U. pinnatifida extract. In conclusion, supplementing the diet of olive flounder with U. pinnatifida glycroprotein improved its growth and immunity.

The Role of the Insulin-like Growth Factor System during the Periimplantation Period (착상기 Insulin-like Growth Factor System의 역할)

  • 이철영
    • Journal of Embryo Transfer
    • /
    • v.12 no.3
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF