• Title/Summary/Keyword: Insulin-like Growth Factors

Search Result 149, Processing Time 0.024 seconds

The roles of PKC-δ on the regulation of insulin-like growth factor(IGF)-I and insulin-Like growth factor binding protein-3 secretion by all-trans retinoic acid in MCF-7 cell (MCF-7 cell에서 all-trans retinoic acid에 의한 insulin-like growth factor-I와 insulin-like growth factor binding protein-3 분비조절에 있어서 PKC-δ의 역할)

  • Lee, Sun-Mi;Kim, Sang-Hoon;Choi, Kwang-Soo;Kang, Chang-Won
    • Korean Journal of Veterinary Research
    • /
    • v.46 no.2
    • /
    • pp.97-105
    • /
    • 2006
  • All-trans retinoic acid (AtRA) induces growth inhibition and apoptosis in a variety of tumer cells, including MCF-7 cells. Insulin-like growth factors (IGFs) system has been reported to be associated with the development of cancer. Although MCF-7 cell with AtRA is to be the major stimulus for the cell growth and apoptosis, the mechanism of insulin-like growth factor-I (IGF-I)/insulin-like growth factor binding protein-3 (IGFBP-3) system remains to be elucidated. Thus, this study was conducted to the effect of AtRA on the gene expression and level of IGF-I and IGFBP-3. In addition, we investigated the involvement of PKC-${\delta}$ on the IGF-I and IGFBP-3 secretion in MCF-7 cell. AtRA(${\geq}10^{-7}M$) decreased the IGF-1 secretion and mRNA expressions, but increased IGFBP-3 secretion and mRNA expressions in MCF-7 cells. Especially, the treatment of AtRA at 72 hours caused a significant reduction in the IGF-I secretion and mRNA expressions but increment in IGFBP-3 secretion and mRNA expressions (p < 0.05). $10^{-7}M$ AtRA activated PKC-${\delta}$ that is one among PKC-$\iota$, ${\alpha}$, ${\lambda}$ and ${\delta}$ in MCF-7 cell. Rotllerin, a PKC-${\delta}$ inhibitor, blocked AtRA-induced inhibition of the IGF-I and mRNA expressions, and increase of lGFBP-3 and mRNA expressions in MCF-7 cell. Together, AtRA inhibited the IGF-I secretion and mRNA expressions, but increased IGFBP-3 secretion and mRNA expressions in MCF-7 cell. Furthermore, AtRA-induced alteration of IGF-I, IGFBP-3 secretion, and the gene expressions were mediated via PKC-${\delta}$ activity.

Effects of Epidermal Growth Factor (EGF) and Insulin-like Growth Factor-1 (IGF-1) on Maturation of Bovine Follicular Oocytes In Vitro (Epidermal Growth Factor(EGF)와 Insulin-like Growth Factor-1(IGF-1)이 소 난포란의 체외성숙에 미치는 영향)

  • 윤종택;정영호;한기영;최선호
    • Journal of Embryo Transfer
    • /
    • v.13 no.3
    • /
    • pp.245-249
    • /
    • 1998
  • The purpose of this study was to evaluate the effects of growth factors such as epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) on maturation of bovine follicular oocytes in vitro. Oocytes were recovered from the ovaries of slaughtered Hanwoos. The oocytes were matured in TCM 199 at 39$^{\circ}C$, 5% $CO_2$ in air. Growth factors were added to maturation medium as follows: control (no serum), EGF (10ng/m1, 50ng/ml or 100ng/m1), IGF-1 (100ng/m1) and EGF (50ng/ml) + IGF-1 (100ng/m1). The oocytes were placed onto a slide and stained with aceto-orcein dye. Nuclear maturation was evaluated and classified as germinal vesicle breakdown (GVBD), metaphase-I (MI) or metaphase-ll(Mll). Maturation rates were 37.9% (control), 45.8% (EGF, 10ng/m1), 55.8% (EGF, 50ng/ml), 44.4% (EGF, 100ng/m1), 46.7% (IGF-1, 100ng/m1) and 67.0% (IGF-1+EGF). The highest group developed to Mll stage was IGF-1+EGF treatment group (p<0.05). Therefore, nuclear maturation of bovine oocytes were affected by both of growth factors, and it seems to have a mutual activity between them.

  • PDF

Insulin resistance and Alzheimer's disease

  • De La Monte, Suzanne M.
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.475-481
    • /
    • 2009
  • Emerging data demonstrate pivotal roles for brain insulin resistance and insulin deficiency as mediators of cognitive impairment and neurodegeneration, particularly Alzheimer's disease (AD). Insulin and insulin-like growth factors (IGFs) regulate neuronal survival, energy metabolism, and plasticity, which are required for learning and memory. Hence, endogenous brain-specific impairments in insulin and IGF signaling account for the majority of AD-associated abnormalities. However, a second major mechanism of cognitive impairment has been linked to obesity and Type 2 diabetes (T2DM). Human and experimental animal studies revealed that neurodegeneration associated with peripheral insulin resistance is likely effectuated via a liver-brain axis whereby toxic lipids, including ceramides, cross the blood brain barrier and cause brain insulin resistance, oxidative stress, neuro-inflammation, and cell death. In essence, there are dual mechanisms of brain insulin resistance leading to AD-type neurodegeneration: one mediated by endogenous, CNS factors; and the other, peripheral insulin resistance with excess cytotoxic ceramide production.

The Regulation of Insulin-Like Growth (IGF) Factors and IGF Binding Proteins by High Glucose in Mesangial Cells

  • Park Soo-hyun
    • Biomedical Science Letters
    • /
    • v.10 no.3
    • /
    • pp.203-210
    • /
    • 2004
  • It has been reported that glomerulosclerosis mediated by the dysfunction of mesangial cells and insulin-like growth factors (IGFs) are associated with the development of diabetic nephropathy. However, it is not yet known the effect of high glucose on IGF-I, -II secretion, IGF-I receptor, and IGFBPs expression in the mesangial cells. Thus, this study was conducted to examine the effect of high glucose on IGF system and its involvement of protein kinase C (PKC) and oxidative stress in mesangial cells. In this study, high glucose (25 mM) increased IGF-I and IGF-II secretion and mRNA expression (P<0.05), which was blocked by PKC inhibitor (staurosporine, 10/sup -8/ M) and antioxidant (N-acetyl cystein, 10/sup -5/ M). High glucose decreased IGFBP-1 and -2 expression but increased IGFBP-5 expression. These alteration of IGFBPs by high glucose was also prevented by staurosporine and NAC, suggesting the role of PKC and oxidative stress. Indeed, high glucose increased PKC activity. Furthermore, high glucose-induced increase of lipid peroxide (LPO) formation was blocked by PKC inhibitors. In conclusion, high glucose alters IGF system via PKC-oxidative pathways in mesangial cells.

  • PDF

The Signaling Pathways Involved in High Glucose-Induced Secretion of Insulin-Like Growth Factors (IGFs) and IGF Binding Proteins in Podocytes

  • Lim Sul-Ki;Han Ho-Jae;Park Soo-Hyun
    • Biomedical Science Letters
    • /
    • v.12 no.3
    • /
    • pp.217-224
    • /
    • 2006
  • It has been reported that the dysfunctions of podocytes are associated with the development of diabetic nephropathy. In addition, insulin-like growth factors (IGFs) are associated with the development of diabetic nephropathy. However, it is not yet known about the effect of high glucose on IGF-I, -II secretion, and IGF binding proteins (IGFBPs) expression in the podocytes. Thus, this study was conducted to examine the effect of high glucose on IGF system and its involvement of protein kinase C (PKC) and mitogen activated protein kinases (MAPKs) in podocytes. In this study, high glucose (25 mM) increased IGF-I and IGF-II secretion (P<0.05), which was blocked by SB 203580 (a p38 MAPK inhibitor) but not by PD 98059 (a p44/42 MAPK inhibitor). In addition, high glucose-induced stimulation of IGFs was blocked by bisindolylmaleimide I and staurosporine (protein kinase C inhibitors). High glucose also increased IGFBP-l expression, which was blocked by bisindolylmaleimide I and SB 203580. In conclusion, high glucose alters IGFs secretion and IGFBP expression via PKC and p38 MAPK pathways in podocytes.

  • PDF

IGF-I Exerts an Anti-inflammatory Effect on Skeletal Muscle Cells through Down-regulation of TLR4 Signaling

  • Lee, Won-Jun
    • IMMUNE NETWORK
    • /
    • v.11 no.4
    • /
    • pp.223-226
    • /
    • 2011
  • Although exercise-induced growth factors such as Insulin-like growth factor-I (IGF-I) are known to affect various aspects of physiology in skeletal muscle cells, the molecular mechanism by which IGF-I modulates anti-inflammatory effects in these cells is presently unknown. Here, we showed that IGF-I stimulation suppresses the expression of toll-like receptor 4 (TLR4), a key innate immune receptor. A pharmacological inhibitor study further showed that PI3K/Akt signaling pathway is required for IGF-I-mediated negative regulation of TLR4 expression. Furthermore, IGF-I treatment reduced the expression of various NF-${\kappa}B$-target genes such as TNF-${\alpha}$ and IL-6. Taken together, these findings indicate that the anti-inflammatory effect of exercise may be due, at least in part, to IGF-I-induced suppression of TLR4 and subsequent downregulation of the TLR4-dependent inflammatory signaling pathway.

Growth Factor Receptor Expression on Brain Tumor Cell Lines : Preliminary Study for in vitro and in vivo Experiments of Immunotoxin Therapy (뇌종양세포주에서의 성장인자수용체의 발현 : 면역독소 치료의 연구를 위한 예비실험)

  • im, Ki-Uk;Ni, Hsiao-Tzu;Low, Walter C.;Hall, Walter A.
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.6
    • /
    • pp.731-737
    • /
    • 2000
  • Objective : Growth factor receptors on the tumor cells are known to be expressed highly allowing the tumor cells to bind growth factors to stimulate cellular division. Immunotoxin therapy is one of the novel approaches to the primary malignant brain tumor, and expression of cell-surface receptor is essential for the immunotoxin to have specific anti-tumor activity. Despite promising cytotoxic activity of immunotoxin, tumor responses are not curative on clinical trials, and additional studies are needed regarding various factors influencing the efficacy of the immunotoxin. The purpose of this study is to detect the expression of various growth factor receptors on brain tumor cell lines which are going to be used in these studies. Materials and Methods : The authors detected transferrin receptor(TR), insulin-like growth factor-1 receptor(IGF-1R), and interleukin-4 receptor(IL-4R) on medulloblastoma cell line(Daoy) and glioblastoma cell lines(U373 MG and T98 G) by flow cytometric analysis. Results : TR was expressed on Daoy, U373 MG, and T98 G. IGF-1R was expressed on Daoy and U373 MG, but not on T98 G. IL-4R was expressed on all cell lines tested. Conclusion : The transferrin and interleukin-4 receptors might be good targets for immunotoxin therapy. The results should be considered in additional in vitro and in vivo studies regarding immunotoxin and in establishing the proper treatment model of the immunotoxin therapy including selection of the adequate immunotoxin.

  • PDF

Protein variation and involvement of insulin-like growth factor during embryonic development in the olive flounder Paralichthys olivaceus

  • Kim, Kang-Woong;Nam, Taek Jeong;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.2
    • /
    • pp.4.1-4.5
    • /
    • 2018
  • Insulin-like growth factors (IGFs), along with IGF-binding protein and IGF receptor, are well-known regulators in the growth and survival of vertebrates. In this study, we investigated the involvement of IGFs and protein variation during embryonic development of the olive flounder (Paralichthys olivaceus). Morphological stages were divided into six main developments as blastula, gastrula, cephalization, cranial regionalization, tail lift, and hatch. During embryonic development, protein variation was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization quadrupole time-of-flight mass spectrometry/mass spectrometry. In addition, the mechanism of signaling of IGF-I receptor was examined using immuno-blot analysis. We found marked changes in protein expression at four stages of embryonic development and identified proteins as belonging to the vitellogenin 2 family. As development progresses, expression of IGF-II, phosphotyrosine, and phospho-Akt increased, while expression of growth factor receptor-bound protein 2 (GRB2) and one of guanine-nucleotide-binding proteins (Ras) decreased. These results provide basic information on the IGF system in the embryonic development of the olive flounder.

Identification of Novel SNPs in Bovine Insulin-like Growth Factor Binding Protein-3 (IGFBP3) Gene

  • Kim, J.Y.;Yoon, D.H.;Park, B.L.;Kim, L.H.;Na, K.J.;Choi, J.G.;Cho, C.Y.;Lee, H.K.;Chung, E.R.;Sang, B.C.;Cheong, I.J.;Oh, S.J.;Shin, Hyoung Doo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.3-7
    • /
    • 2005
  • The insulin-like growth factors (IGFs), their receptors, and their binding proteins play key roles in regulating cell proliferation and apoptosis. Insulin-like growth factor binding protein-3 (IGFBP3, OMIM #146732) is one of the proteins that bind to the IGFs. IGFBP3 is a modulator of IGF bioactivity, and direct growth inhibitor in the extravascular tissue compartment. We identified twenty-two novel single nucleotide polymorphisms (SNPs) in IGFBP3 gene in Korean cattle (Hanwoo, Bos taurus coreanae) by direct sequencing of full gene including -1,500 bp promoter region. Among the identified SNPs, five common SNPs were screened in 650 Korean cattle; one SNP in promoter (IGFBP3 G-854C), one in 5'UTR region (IGFBP3 G-100A), two in intron 1 (IGFBP3 G+421T, IGFBP3 T+1636A), and one in intron 2 (IGFBP3 C+3863A). The frequencies of each SNP were 0.357 (IGFBP3 G-854C), 0.472 (IGFBP3 G-100A), 0.418 (IGFBP3 G+421T), 0.363 (IGFBP3 T+1636A) and 0.226 (IGFBP3 C+3863A), respectively. Haplotypes and their frequencies were estimated by EM algorithm. Six haplotypes were constructed with five SNPs and linkage disequilibrium coefficients (|D'|) between SNP pairs were also calculated. The information on SNPs and haplotypes in IGFBP3 gene could be useful for genetic studies of this gene.

Hypopituitarism and Legg-Calve-Perthes disease related to difficult delivery

  • Bas, Veysel Nijat;Uytun, Salih;Vurdem, Umit Erkan;Torun, Yasemin Altuner
    • Clinical and Experimental Pediatrics
    • /
    • v.58 no.7
    • /
    • pp.270-273
    • /
    • 2015
  • Legg-Calve-Perthes (LCP) disease is characterized by idiopathic avascular osteonecrosis of the epiphysis of the femur head. The main factor that plays a role in the etiology of the disease is decreased blood flow to the epiphysis. Many predisposing factors have been suggested in the etiology of LCP disease, and most have varying degrees of effects. Here we present the case of a boy aged 4 years and 10 months with complaints of short stature and a diagnosis of multiple hypophyseal hormone deficiency, in whom LCP disease and difficult birth-related pituitary stalk interruption syndrome were identified by anamnesis. The present case revealed that LCP disease and hypophyseal hormone deficiency could be secondary to difficult birth and that LCP disease could be secondary to insulin-like growth factor 1 deficiency. Additionally, to the best of our knowledge there is no published case on the relation between LCP disease and insulin-like growth factor 1 deficiency. Therefore, we believe that this case is worthy of presentation.