• Title/Summary/Keyword: Insulin Response

Search Result 217, Processing Time 0.024 seconds

LC15-0133, a DPP IV Inhibitor: Efficacy in Various Animal Models (LC15-0133, DPP IV 저해제: 여러 동물 모델에서의 효능)

  • Yim, Hyeon-Joo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2008.04a
    • /
    • pp.5-20
    • /
    • 2008
  • GLP-1-based drugs (GLP-1 analogues and DPP IV inhibitors) and incretin mimetics are currently one of the most exciting classes of agents for type II diabetes. GLP-1, a gut peptide, is an incretin that potentiates glucose-dependent insulin release from the pancreas, slows GI-transit and stimulates the proliferation of beta-cells. DPP IV inhibitors act like incretins by inhibiting DPP IV which inactivates GLP-1. LC15-0133 is a competitive, reversible DPP IV inhibitor ($IC_{50}$ = 24 nM, Ki=0.247 nM) with excellent selectivity over other critical human proteases such as DPP II, DPP 8, elastase, trypsin. and urokinase. LC15-0133 showed long half-life and good bioavailability in rats and dogs. Inhibition of plasma DPP IV activity by LC15-0133 was kept more than 50% 24 hours after oral dosing in rats and dogs at 0.1 mg/kg and 0.02 mg/kg, respectively. The Minimum effective doses of LC15-0133 were 0.01 mg/kg for lowering blood glucose excursion during oral glucose tolerance test and 0.1 mg/kg for increasing glucose-induced GLP-1 response in C57BL/6 mice. Repeat oral administration of LC15-0133 for 1 month delayed the progression to diabetes and reduced HbA1c levels in a dose-dependent manner in Zucker Diabetic Fatty rats. In conclusion, LC15-0133 is a novel, potent, selective and orally active DPP IV inhibitor and showed an excellent blood glucose lowering effects in various animal models.

  • PDF

Differential Proteome Expression of In vitro Proliferating Bovine Satellite Cells from Longissimus Dorsi, Deep Pectoral and Semitendinosus Muscle Depots in Response to Hormone Deprivation and Addition

  • Rajesh, Ramanna Valmiki;Kim, Seong-Kon;Park, Mi-Rim;Park, Min-Ah;Jang, Eun-Joung;Hong, Seung-Gu;Chang, Jong-Soo;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Journal of Animal Science and Technology
    • /
    • v.51 no.6
    • /
    • pp.459-470
    • /
    • 2009
  • The aim of this study was to analyze the proteome of proliferating bovine satellite cells from longissimus dorsi, deep pectoral and semitendinosus muscle depots which had been subjected to hormonal deprivation or addition in culture. For hormone deprivation or addition studies, the cells were either grown in 10% charcoal-dextran stripped fetal bovine serum (CD-FBS) or in 10% FBS supplemented medium. Further to analyze the effect of insulin like growth factor (IGF-1) and testosterone (TS), the cells were grown in 10% CD-FBS containing IGF-1 (10 ng/ml) or TS (10 nM). Results have shown that hormone deprivation had a negative impact on proliferation of the cells from each of the muscle depots. In case of IGF-1 and TS addition, the proliferation levels were low compared with that of the cells grown in 10% FBS. Hence, to gain the insights of the proteins that are involved in such divergent levels of proliferation, the proteome of such satellite cells proliferating under the above mentioned conditions were analyzed using 2D-DIGE and MALDI-ToF/ToF. Thirteen proteins during hormone deprivation and nine proteins from hormone addition were found to be differentially expressed in all the cultures of the cells from the three depots. Moreover, the results highlighted in this study offer a role for each differentially expressed protein with respect to its effect on positive or negative regulation of cell proliferation.

Differential Proteome Expression of in vitro Proliferating Hanwoo Stromal Vascular Cells from Omental, Subcutaneous and Intramuscular Depots in Response to Hormone Deprivation and IGF-1, Estradiol-17β Addition

  • Rajesh, Ramanna Valmiki;Kim, Seong-Kon;Park, Min-Ah;Kwon, Seulemina;Chang, Jong-Soo;Yoon, Du-Hak;Kim, Tae-Hun;Lee, Hyun-Jeong
    • Journal of Animal Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.175-186
    • /
    • 2010
  • The aim of this study was to analyze the proteome expressions of proliferating stromal vascular cells from Hanwoo omental, subcutaneous and intramuscular depots subjected to hormone deprivation and IGF-1, Estradiol-$17{\beta}$ addition. For hormone deprivation or addition studies, the cells were either grown in 10% charcoal-dextran stripped fetal bovine serum (CD-FBS) or in 10% FBS supplemented medium. Further, to analyze the effect of insulin like growth factor (IGF-1) and $17\beta$-Estradiol (E2), cells were grown in 10% CD-FBS containing IGF-1 (10 ng/ml) or E2 (10 nM). The results showed that hormone deprivation had a negative impact on proliferation among the cells from all depots without any growth difference. On comparison of proliferation levels, higher levels were observed in cells that were grown in 10% FBS than in 10% CD-FBS alone or with IGF-1/E2. Proteome expression from preadipocytes grown in hormone deprivation conditions were compared by 2D-DIGE and MALDIToF/ToF. A total of twelve different proteins were found to be differentially expressed under hormone deprivation conditions. Further, our proteomic analysis with DIGE under IGF-1 and E2 addition revealed four proteins with differential expression levels. Moreover, the results highlighted in this study offer a role for each differentially expressed protein with respect to their effect in positive or negative regulation on proliferation.

The Difference of Efficacy for Oral Hypoglysemic Pharmacotherapy Based on Sasang Constitutional Medicine Among Type II Diabetes Mellitus Patients in Korea (제 2형 당뇨병 환자에서 사상체질에 따른 경구 혈당강하요법의 치료 반응성 및 사용 패턴 평가)

  • Kim, Ji Yeon;Lee, Myung Koo;Kim, Jung Tae;Lim, Sung Cil
    • YAKHAK HOEJI
    • /
    • v.58 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • Although Korean patients with type 2 diabetes mellitus (T2DM) are generally treated by western medicine, many of them strongly believe in the traditional oriental Sasang constitutional classification and depend on it for food, health supplements, and oriental medicines decision making. Sasang constitutional classification is a part of traditional Korean medicine that divides people into four constitutional types (Tae-Yang: TY, Tae-Eum: TE, So-Yang: SY, and So-Eum: SE), which differ in inherited characteristics such as appearance, personality traits, susceptibility to diseases, and drug responses. It is recommended for T2DM patients to control their blood glucose very well from early stages with drugs and diet. However, many T2DM patients respond differently to their drugs, even though they receive the same medicine. Therefore, the present study investigated whether Sasang constitutional type can explain the therapeutic differences between oral hypoglycemic agents (OHAs) therapy (mono, dual and triple drug therapy). Patients of 618 with T2DM diagnosis and Sasang constitutional type known who received both western and oriental medicine treatment in a hospital between April 2006 and April 2013 retrospectively studied. HbA1c (%) and blood glucose (mg/dl) levels before OHAs therapy and 3 month after were collected for metformin (MET) or sulfonylurea (SU) monotherapy, MET+SU dual therapy, MET+except SU (where was either alpha-glucosidase inhibitor, dipeptidyl peptidase-4 inhibitor, meglitinide or thiazolidinedione) dual therapy, and triple therapy, according to Sasang constitutional type. For statistical analysis, ANOVA was used and paired t-test by SPSS 19.0 where P values less than 0.05 were considered statistically significant. Pattern was similar levels of HbA1c and blood glucose and which was decreased in order of mono, MET+SU dual, MET+except SU dual and triple therapy. In all patients comparison, for the So-yang (SY) constitutional type, either monotherapy was less effective; for Te-eum (TE) type, MET+SU dual therapy was less effective while MET+except SU dual therapy was more effective and the triple therapy was less effective; and for So-eum (SE) type, the triple therapy was more effective. For the management of TE type it is recommended to use drugs except SU when dual therapy is needed, restrict triple therapy and consider dual and insulin therapy; for SY type it is recommended to follow current guidelines; and for SE type it is advisable to skip dual therapy and start the triple therapy early. Finally, the therapeutic response to OHAs is different among Korean T2DM patients with different Sasang constitutional types. Taken together, the choice of effective OHAs therapy for each type is necessary in order to minimize the poor control of blood glucose level, the risk of complications, and the costs from a failure of therapy.

The Hypoglycemic Effect of Saururus chinensis Baill in Animal Models of Diabetes Mellitus

  • Joo, Hee-Jeong;Kang, Ming-Jung;Seo, Tae-Jin;Kim, Hyun-A;Yoo, Sung-Ja;Lee, Soo-Kyung;Lim, Hwa-Jae;Byun, Boo-Hyeong;Kim, Jung-In
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.413-417
    • /
    • 2006
  • The purpose of this study was to investigate the hypoglycemic effect of Saururus chinensis Baill in vitro and in vivo. Methanol extract of S. chinensis Baill inhibited yeast ${\alpha}$-glucosidase activity by 49.8%, which was twice as strong as that of acarbose at a concentration of 0.5 mg/mL in vitro. The effect of S. chinensis Baill methanol extract on the postprandial increase in blood glucose levels was studied in streptozotocin-induced diabetic rats using a carbohydrate load test. Oral administration of S. chinensis Baill extract (500 mg/kg) significantly decreased incremental blood glucose levels at 60 and 90 min (p<0.05) after oral ingestion of starch (1 g/kg). The area under the glucose response curve of the S. chinensis Baill group was significantly decreased compared to that of the control group (p<0.05). The effect of prolonged feeding of S. chinensis Baill was studied in an animal model of type 2 diabetes. Three-week-old db/db mice were fed an AIN-93G diet or a diet containing 0.5% S. chinensis Baill extract for 7 weeks after 1 week of adaptation. Plasma glucose, insulin, and blood glycated hemoglobin levels of the mice fed S. chinensis Baill extract were significantly lower than those of the control group (p<0.05). Therefore, we conclude that S. chinensis Baill is effective in controlling hyperglycemia in animal models of diabetes mellitus.

Neuronal Mechanisms that Regulate Vitellogenesis in the Fruit Fly (노랑초파리 난황형성과정 제어 신경 메커니즘)

  • Kim, Young-Joon;Zhang, Chen
    • Korean journal of applied entomology
    • /
    • v.61 no.1
    • /
    • pp.109-115
    • /
    • 2022
  • Vitellogenesis is the process by which yolk accumulates in developing oocytes. The initiation of vitellogenesis represents an important control point in oogenesis. When females of the model insect Drosophila melanogaster molt to become adults, their ovaries lack mature vitellogenic oocytes, only producing them after reproductive maturation. After maturation, vitellogenesis stops until a mating signal re-activates it. Juvenile hormone (JH) from the endocrine organ known as the corpora allata (CA) is the major insect gonadotropin that stimulates vitellogenesis, and the seminal protein sex peptide (SP) has long been implicated as a mating signal that stimulates JH biosynthesis. In this review, we discuss our new findings that explain how the nervous system gates JH biosynthesis and vitellogenesis associated with reproductive maturation and the SP-induced post-mating response. Mated females exhibit diurnal rhythmicity in oogenesis. A subset of brain circadian pacemaker neurons produce Allatostatin C (AstC) to generate a circadian oogenesis rhythm by indirectly regulating JH and vitellogenesis through the brain insulin-producing cells. We also discuss genetic evidence that supports this model and future research directions.

The Effect of Pilates Mat Exercise on Cardiovascular Disease Risk Factors and Inflammation Markers in Sarcopenic Obesity Elderly (필라테스 매트운동이 근위축 비만 노인의 심혈관질환 위험요인과 염증반응지표에 미치는 영향)

  • Kim, Hyun-Tae;Kim, Nam-Jung
    • 한국체육학회지인문사회과학편
    • /
    • v.51 no.4
    • /
    • pp.407-417
    • /
    • 2012
  • The purpose of the study was to determine the effects of pilates mat exercise on cardiovascular disease risk factors and inflammation markers in sarcopenic obesity elderly. All subjects were sarcopenic obesity(height for each of the arms, legs, appendicular muscle mass ratio of 1.16kg/m2, 4.31kg/m2, 5.21kg/m2 under and % body fat is more than 30%) elderly performed the pilates mat exercise during 12-week for 60 minutes 3 times a weeks. All subjects of this study were examined the changes in cardiovascular disease risk factors(TC, TG, HDL-C, LDL-C, Glucose, Insulin) and inflammation markers(fibrinogen, adiponectin, leptin, CRP). The results of the study in the exercise group were as follows; The weight, % body fat, TC, TG, LDL-C, fibrinogen, CRP had significantly decreased and muscle mass, HDL-C, adiponectin had significantly increased. And also, pilates mat exercise can effective to improve sarcopenic obesity, and pilates mat exercises performed coy shrink obesity to cardiovascular disease and inflammatory response indicators of older women as old man's physical features of the deterioration of the prevention of obesity and muscle strength loss, causing the effective exercise method is meant to be.

Ginsenosides Rc, as a novel SIRT6 activator, protects mice against high fat diet induced NAFLD

  • Zehong Yang;Yuanyuan Yu ;Nannan Sun;Limian Zhou;Dong Zhang;HaiXin Chen ;Wei Miao ;Weihang Gao ;Canyang Zhang ;Changhui Liu ;Xiaoying Yang ;Xiaojie Wu ;Yong Gao
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.376-384
    • /
    • 2023
  • Background: Hepatic lipid disorder impaired mitochondrial homeostasis and intracellular redox balance, triggering development of non-alcohol fatty liver disease (NAFLD), while effective therapeutic approach remains inadequate. Ginsenosides Rc has been reported to maintain glucose balance in adipose tissue, while its role in regulating lipid metabolism remain vacant. Thus, we investigated the function and mechanism of ginsenosides Rc in defending high fat diet (HFD)-induced NAFLD. Methods: Mice primary hepatocytes (MPHs) challenged with oleic acid & palmitic acid were used to test the effects of ginsenosides Rc on intracellular lipid metabolism. RNAseq and molecular docking study were performed to explore potential targets of ginsenosides Rc in defending lipid deposition. Wild type and liver specific sirtuin 6 (SIRT6, 50721) deficient mice on HFD for 12 weeks were subjected to different dose of ginsenosides Rc to determine the function and detailed mechanism in vivo. Results: We identified ginsenosides Rc as a novel SIRT6 activator via increasing its expression and deacetylase activity. Ginsenosides Rc defends OA&PA-induced lipid deposition in MPHs and protects mice against HFD-induced metabolic disorder in dosage dependent manner. Ginsenosides Rc (20mg/kg) injection improved glucose intolerance, insulin resistance, oxidative stress and inflammation response in HFD mice. Ginsenosides Rc treatment accelerates peroxisome proliferator activated receptor alpha (PPAR-α, 19013)-mediated fatty acid oxidation in vivo and in vitro. Hepatic specific SIRT6 deletion abolished ginsenoside Rc-derived protective effects against HFD-induced NAFLD. Conclusion: Ginsenosides Rc protects mice against HFD-induced hepatosteatosis by improving PPAR-α-mediated fatty acid oxidation and antioxidant capacity in a SIRT6 dependent manner, and providing a promising strategy for NAFLD.

Effects of different levels of organic chromium and selenomethionine cocktails in broilers

  • Jaewoo An;Younggwang Kim;Minho Song;Jungseok Choi;Hanjin Oh;Seyeon Chang;Dongcheol Song;Hyunah Cho;Sehyun Park;Kyeongho Jeon;Yunhwan Park;Gyutae Park;Sehyuk Oh;Yuna Kim;Nayoung Choi;Jongchun Kim;Hyeunbum Kim;Jinho Cho
    • Journal of Animal Science and Technology
    • /
    • v.65 no.6
    • /
    • pp.1226-1241
    • /
    • 2023
  • Selenium (Se) is an essential trace mineral that plays an important role in physiological processes by regulating the antioxidant defense system and enhancing immunity. Chromium is an essential mineral involved in carbohydrate and lipid metabolism and also plays a role in maintaining normal insulin function. Based on these advantages, we hypothesized that the addition of selenomethionine (SeMet) and organic chromium (OC) to broiler diets would increase Se deposition, antioxidant capacity and immune response in meat. Therefore, this study analyzed the effects of OC and SeMet on growh performance, nutrients digestibility, blood profiles, intestinal morphology, meat quality characteristics, and taxonomic analysis of broilers. A total of 168 one-day-old broiler chicken (Arbor Acres) were randomly allotted to 3 groups based on the initial body weight of 37.33 ± 0.24 g with 7 replicate per 8 birds (mixed sex). The experiments period was 28 days. Dietary treatments were folloewd: Basal diets based on corn-soybean meal (CON), basal diet supplemented with 0.2 ppm OC and 0.2 ppm SeMet (CS4), and basal diet supplemented with 0.4 ppm OC and 0.4 ppm SeMet (CS8). Supplementation of OC and SeMet did not affect on growth performance, nutrient digestibility. However, CS8 supplementation increased in duodenum villus height and villus height : crypt depth, and increased in breast meat Se deposition. In addition, CS8 group showed higher uric acid and total antioxidant status than CON group. Taxonomic analysis at phylum level revealed that Proteobacteria and Firmicutes of CS4 and CS8 were lower than CON group. In genus level, the relative abundance of fecal Lactobacillus and Enterococcus of CS4 and CS8 groups were higher than CON group. In short, 0.4 ppm OC and 0.4 ppm SeMet supplementation to broiler diet supporitng positive gut microbiome change, also enhancing antioxidant capacity, and Se deposition in breast meat.

Role of the Nuclear Transcription Factor NF-κB Caused by Acute Hypoxia in the Heart (급성 저산소증 상태에서 심장 내 전사인자 NF-κB의 기능)

  • Joo, Chan Uhng;Juhng, Woo Suk;Kim, Jae Cheol;Yi, Ho Keun
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.9
    • /
    • pp.1106-1113
    • /
    • 2002
  • Purpose : Nuclear ($factor-{\kappa}BNF-{\kappa}B$) is now recognized as playing a potential role in programmed cell death and the adaptive response to various stress. Cellular hypoxia is a primary manifestation of many cardiovascular diseases. It seems that vascular endothelial growth factor (VEGF) and insulin like growth factor-I(IGF-I) have a function as a protective molecule in the heart against several stress including hypoxia. In this study, the role of $NF-{\kappa}B$ to the cellular response and regulation of protective molecules against the acute hypoxia in the heart was studied. Methods : To cause acute hypoxic stress to the heart, Sprague Dawley rats were exposed to hypoxic chamer($N_2$ 92% and $O_2$ 8%). After the hypoxic exposure, nuclear proteins, total proteins and mRNA were isolated from heart. Translocation of the transcription factors $NF-{\kappa}B$, NF-ATc, AP-1 and NKX-2.5 were evaluated by electrophoretic mobility shift assay(EMSA). The expression of IGF-I and VEGF were studied before and after the hypoxic stress by competitive-PCR, Northern hybridization and Western hybridization. To confirm the role of the $NF-{\kappa}B$ in the heart, the rats also were pretreated with diethyl-dithiocarbamic acid(DDTC) into peritoneal cavity to block $NF-{\kappa}B$ translocation into nucleus. Results : The expression of $NF-{\kappa}B$, AP-1 and NF-ATc were increased by the hypoxic stress. Increased expression of the VEGF and IGF-I were also observed by the hypoxic stress. However, the blocking of the $NF-{\kappa}B$ translocation reduced those expressions of VEGF and IGF-I. Conclusion : These results suggest that $NF-{\kappa}B$ has a protective role against the acute hypoxia through several gene expression, especially VEGF and IGF-I in heart muscle.