• 제목/요약/키워드: Insulin/IGF-1 signaling

검색결과 47건 처리시간 0.032초

Insulin Receptor Substrate Proteins and Diabetes

  • Lee Yong Hee;White Morris F.
    • Archives of Pharmacal Research
    • /
    • 제27권4호
    • /
    • pp.361-370
    • /
    • 2004
  • The discovery of insulin receptor substrate (IRS) proteins and their role to link cell surface receptors to the intracellular signaling cascades is a key step to understanding insulin and insulin-like growth factor (IGF) action. Moreover, IRS-proteins coordinate signals from the insulin and IGF receptor tyrosine kinases with those generated by proinflammatory cytokines and nutrients. The IRS2-branch of the insulin/IGF signaling cascade has an important role in both peripheral insulin response and pancreatic $\beta$-cell growth and function. Dysregulation of IRS2 signaling in mice causes the failure of compensatory hyperinsulinemia during peripheral insulin resistance. IRS protein signaling is down regulated by serine phosphorylation or protea-some-mediated degradation, which might be an important mechanism of insulin resistance during acute injury and infection, or chronic stress associated with aging or obesity. Under-standing the regulation and signaling by IRS1 and IRS2 in cell growth, metabolism and survival will reveal new strategies to prevent or cure diabetes and other metabolic diseases.

곤충 insulin-like peptide의 생리 조절 작용 (Physiological Function of Insulin-like Peptides in Insects)

  • 김두경;이재민
    • 한국응용곤충학회지
    • /
    • 제61권1호
    • /
    • pp.85-90
    • /
    • 2022
  • 인슐린(insulin)과 insulin-like growth factor-1 (IGF-1)은 척추동물에서 대사, 생장, 수명 등의 여러 생리대사를 조절하는 중요한 호르몬이다. 곤충에서도 IGF-1과 구조적으로 유사한 insulin-like peptide (ILP)들이 존재하며 이들이 곤충 생리 조절에 중요하게 관여함이 밝혀졌다. 이번 총설에서 곤충 ILP 및 초파리(Drosophila melanogaster) 유전체 분석을 통해 척추동물에 존재하는 인슐린 및 IGF-1 수용체 신호전달계와 유사하다고 확인된 ILP 수용체 신호전달계에 대해 설명하고자 한다. 추가적으로, 곤충 체내의 영양 상태에 따라 조절되는 뇌에서의 ILP의 합성과 분비, ILP에 의한 대사의 생리적 조절에 대해 논한다. 또한 ILP가 생장, 발달, 생식, 휴면에 기여하는 바도 논의하고, 마지막으로 ILP 수용체 신호전달계 제어를 통한 해충 방제에의 이용 가능성에 대해 제안하고자 한다.

Growth signaling and longevity in mouse models

  • Kim, Seung-Soo;Lee, Cheol-Koo
    • BMB Reports
    • /
    • 제52권1호
    • /
    • pp.70-85
    • /
    • 2019
  • Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.

Recent Progress in Regulation of Aging by Insulin/IGF-1 Signaling in Caenorhabditis elegans

  • Lee, Hanseul;Lee, Seung-Jae V.
    • Molecules and Cells
    • /
    • 제45권11호
    • /
    • pp.763-770
    • /
    • 2022
  • Caenorhabditis elegans has been used as a major model organism to identify genetic factors that regulate organismal aging and longevity. Insulin/insulin-like growth factor 1 (IGF-1) signaling (IIS) regulates aging in many species, ranging from nematodes to humans. C. elegans is a nonpathogenic genetic nematode model, which has been extensively utilized to identify molecular and cellular components that function in organismal aging and longevity. Here, we review the recent progress in the role of IIS in aging and longevity, which involves direct regulation of protein and RNA homeostasis, stress resistance, metabolism and the activities of the endocrine system. We also discuss recently identified genetic factors that interact with canonical IIS components to regulate aging and health span in C. elegans. We expect this review to provide valuable insights into understanding animal aging, which could eventually help develop anti-aging drugs for humans.

The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster

  • Altintas, Ozlem;Park, Sangsoon;Lee, Seung-Jae V.
    • BMB Reports
    • /
    • 제49권2호
    • /
    • pp.81-92
    • /
    • 2016
  • Insulin/insulin-like growth factor (IGF)-1 signaling (IIS) pathway regulates aging in many organisms, ranging from simple invertebrates to mammals, including humans. Many seminal discoveries regarding the roles of IIS in aging and longevity have been made by using the roundworm Caenorhabditis elegans and the fruit fly Drosophila melanogaster. In this review, we describe the mechanisms by which various IIS components regulate aging in C. elegans and D. melanogaster. We also cover systemic and tissue-specific effects of the IIS components on the regulation of lifespan. We further discuss IIS-mediated physiological processes other than aging and their effects on human disease models focusing on C. elegans studies. As both C. elegans and D. melanogaster have been essential for key findings regarding the effects of IIS on organismal aging in general, these invertebrate models will continue to serve as workhorses to help our understanding of mammalian aging.

Anticarcinogenic effect of quercetin by inhibition of insulin-like growth factor (IGF)-1 signaling in mouse skin cancer

  • Jung, Minjeong;Bu, So Young;Tak, Ka-Hee;Park, Jeong-Eun;Kim, Eunjung
    • Nutrition Research and Practice
    • /
    • 제7권6호
    • /
    • pp.439-445
    • /
    • 2013
  • It has been shown that dysregulation of IGF-1 signaling is associated with tumor incidence and progression, whereas blockade of the signaling can effectively inhibit carcinogenesis. Although several mechanisms of anticancer activity of quercetin were proposed, molecular targets of quercetin have not been identified yet. Hence, we assessed the effect of quercetin on IGF-1 signaling inhibition in BK5.IGF-1 transgenic (Tg) mice, which over-expresses IGF-1 in the skin epidermis. A quercetin diet (0.02% wt/wt) for 20 weeks remarkably delayed the incidence of skin tumor by 2 weeks and reduced tumor multiplicity by 35% in a 7,12-dimethylbenz(a)anthracene (DMBA)-tetradecanoyl phorbol-13-acetate (TPA) two stage mouse skin carcinogenesis protocol. Moreover, skin hyperplasia in Tg mice was significantly inhibited by a quercetin supplementation. Further analysis of the MT1/2 skin papilloma cell line showed that a quercetin treatment dose dependently suppressed IGF-1 induced phosphorylation of the IGF-1 receptor (IGF-1R), insulin receptor substrate (IRS)-1, Akt and S6K; however, had no effect on the phosphorylation of PTEN. Additionally, the quercetin treatment inhibited IGF-1 stimulated cell proliferation in a dose dependent manner. Taken together, these data suggest that quercetin has a potent anticancer activity through the inhibition of IGF-1 signaling.

Effect of Insulin-like Growth Factor-1 on Bone Morphogenetic Protein-2 Expression in Hepatic Carcinoma SMMC7721 Cells through the p38 MAPK Signaling Pathway

  • Xu, Guan-Jun;Cai, Sheng;Wu, Jian-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권4호
    • /
    • pp.1183-1186
    • /
    • 2012
  • Objective: To observe the effect of insulin-like growth factor-1 (IGF-1) on bone morphogenetic protein (BMP)-2 expression in hepatocellular carcinoma SMMC7721 cells. Methods: Cells were divided into blank control, IGF-1, IGF-1 + SB203580, and SB203580 groups. SB203580 was used to block the p38 MAPK signaling pathway. Changes in the expression of BMP-2, p38 MAPK, and phosphorylated p38, MERK, ERK and JNK were determined using reverse transcription polymerase chain reactions (RT-PCR) and Western blot analysis. Results: Protein expression of phosphorylated BMP-2, MERK, ERK, and JNK was significantly up-regulated by IGF-1 compared with the control group ($1.138{\pm}0.065$ vs. $0.606{\pm}0.013$, $0.292{\pm}0.005$ vs. $0.150{\pm}0.081$, $0.378{\pm}0.006$ vs. $0.606{\pm}0.013$, and $0.299{\pm}0.015$ vs. $0.196{\pm}0.017$, respectively; P<0.05). Levels of BMP-2 and phosphorylated MERK and JNK were significantly reduced after blocking of the p38MAPK signaling pathway ($0.494{\pm}0.052$ vs. $0.165{\pm}0.017$, $0.073{\pm}0.07$ vs. $0.150{\pm}0.081$, and $0.018{\pm}0.008$ vs. $0.196{\pm}0.017$, respectively; P<0.05), but such a significant difference was not observed for phosphorylated ERK protein expression ($0.173{\pm}0.07$ vs. $0.150{\pm}0.081$, P>0.05). Conclusion: IGF-1 can up-regulate BMP-2 expression, and p38 MAPK signaling pathway blockage can noticeably reduce the up-regulated expression. We can conclude that the up-regulatory effect of IGF-1 on BMP-2 expression is realized through the p38 MAPK signaling pathway.

인간의 대장암 HT-29 세포주에서 라이코펜이 Insulin-like Growth Factor-I Receptor Signaling Pathway에 미치는 영향 (Effect of Lycopene on the Insulin-like Growth Factor-I Receptor Signaling Pathway in Human Colon Cancer HT-29 Cells)

  • 이현숙;정재인;강영희;;윤정한
    • 한국식품영양과학회지
    • /
    • 제32권3호
    • /
    • pp.437-443
    • /
    • 2003
  • 선행연구에서 라이코펜이 HT-29세포의 증식을 억제하는 것을 관찰하였기 때문에 본 연구는 그 기전을 연구하기 위하여 수행되 었다. 라이코펜이 HT-29 세포의 사멸을 유도하는지 조사하기 위해서 여러 농도의 라이코펜이 포함된 배지에서 세포를 4일 동안 배양하였다. 라이코펜 농도의 증가에 따라 사멸되는 세포에서 나타나는 특징의 하나인 DNA fragmentation이 증가하는 것을 관찰하였다. Western blot을 수행하여 얻은 결과에 의하면 라이코펜이 IGF-IR, IRS-1, PI3K, Akt와 같은 IGF-IR pathway에 속하는 단백질의 수준을 감소시켰다. IGF-IR의 인산화를 유도하기 위해서 라이코펜이 포함된 배지에서 세포를 배양하고 IGF-I을 첨가하여 0, 5, 10, 60분간 배양한 다음 IGF-IR antibody를 이용하여 immunoprecipitation을 수행하였다. 라이코펜은 IGF-I에 의한 IGF-IR, IRS-1의 인산화와 IGF-IR와 PI3K의 결합을 감소하고 인산화된 Akt를 감소시켰다. 이와 같은 IGF-IR signaling의 억제는 이 대장암세포에 존재하는 IGF-II의 autocrine loop을 억제하는 원인이 될 수 있어, 라이코펜의 암세포증식을 억제하는 기전 중의 하나가 될 수 있다. 라이코펜은 토마토와 그 가공품에 많이 존재하는 물질로 자연적인 식사를 통해 많이 섭취할 수 있는 물질이다. 라이코펜의 항암 기전을 밝혀냄으로써 미래 암예방과 치료를 위한 중요한 기능성 영양소를 생산할 수 있는 기초를 마련해줄 수 있을 것으로 기대된다.

Regulation of adductor muscle growth by the IGF-1/AKT pathway in the triploid Pacific oyster, Crassostrea gigas

  • Kim, Eun-Young;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • 제22권9호
    • /
    • pp.19.1-19.10
    • /
    • 2019
  • We investigated the insulin-like growth factor 1 (IGF-1)/AKT signaling pathway involved in muscle formation, growth, and movement in the adductor muscle of triploid Pacific oyster, Crassostrea gigas. Large and small triploid oysters (LTs and STs) cultured under identical conditions were screened, and the signaling pathways of individuals with superior growth were compared and analyzed. mRNA and protein expression levels of actin, troponin, tropomyosin, and myosin, proteins important in muscle formation, were higher in LTs compared with STs. Expression levels of IGF-1, IGF binding protein (IGFBP), and IGFBP complex acid-labile subunit were also higher in LTs compared with STs. Phosphorylation of the IGF receptor as well as that of AKT was high in LTs. In addition, the expression of phosphomammalian target of rapamycin and phospho-glycogen synthase kinase $3{\beta}$ was increased and the expression of Forkhead box O3 was decreased in LTs. Therefore, we suggested that the IGF-1/AKT signaling pathway affects the formation, growth, and movement of the adductor muscle in triploid oysters.

Expression Characteristics of Proteins of the Insulin-like Growth Factor Axis in Non-small Cell Lung Cancer Patients with Preexisting Type 2 Diabetes Mellitus

  • Ding, Jing;Tang, Jie;Chen, Xin;Men, Hai-Tao;Luo, Wu-Xia;Du, Yang;Ge, Jun;Li, Cong;Chen, Ye;Cheng, Ke;Qiu, Meng;Liu, Ji-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5675-5680
    • /
    • 2013
  • Background: Preexisting type 2 diabetes mellitus (T2DM) affects the prognosis and mortality of patients with some cancers. Insulin like growth factor (IGF) and insulin receptor (IR) signaling axes play important roles in both cancer and diabetes development. We aimed to explore the expression characteristics of proteins in IGF/IR axis in non-small cell lung cancer (NSCLC) cases with preexisting T2DM. Methods: Fifty-five NSCLC patients with preexisting T2DM were retrospectively included and matched by 55 NSCLC without diabetes at a 1:1 ratio. The expression of proteins in IGF/IR axis was detected by immunohistochemical staining. Clinicopathological data were collected to analyze their relationship with the protein expression. Results: Both IGF 1 receptor (IGF-1R) and insulin receptor substrate 2 (IRS-2) showed higher expression in the NSCLC with T2DM group, compared with those without T2DM. The high expression of IGF-1R and IRS-2 were found to be negatively associated with lymph node metastases and T staging in the T2DM group, respectively, and IRS-2 expression was also found more in the subgroup whose T2DM duration was more than 4 years. No difference was detected in the expression of IRS-1, IGF-1, IGF-2, IGFBP3, IR and mTOR between groups with or without T2DM. Conclusion: Our study found higher expression of IGF-1R and IRS-2 proteins in NSCLC patients with preexisting T2DM, and that there was an association with early stage NSCLC, which suggested that IGF signaling may play an important early event in development of NSCLC associated with diabetes.