• Title/Summary/Keyword: Insulation effect

Search Result 737, Processing Time 0.03 seconds

Evaluation of Thermal Insulation and Hypothermia for Development of Life Raft (해상 구명정의 단열성능평가 및 저체온증 예측 수치해석 연구)

  • Hwang, Se-Yun;Jang, Ho-Sang;Kim, Kyung-Woo;Lee, Jang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.485-491
    • /
    • 2015
  • The technology review about risk of hypothermia of victim according to heat transfer characteristic of life raft and sea state can use accident correspondence of standing and sinking of ship. This study studied heat transfer characteristics required for the design of life raft and thermal insulation property analysis and evaluation methods. In addition, it is study for comprehend the risk of hypothermia and suggest analysis result that is experiment of thermal insulation property and body temperature property for decide of prediction the body temperature decline Thermal Analysis apply the finite element analysis method is comprehended the property of heat conductivity, convective effect of sea water and properties changes according to property of insulation material. it measure the heat flux with attach temperature sensor on body in order to comprehend the variation of body temperature with boarding a life raft experiment on a human body. This study validate results by comparing variation of temperature measured from experiment on a body with variation of temperature from finite element analysis model. Also, the criteria of hypothermia was discussed through result of finite element analysis.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.

Effect of Concrete Containing the Biochar on Properties and Thermal Insulation Performance (바이오차를 혼입한 콘크리트의 물성 특성과 단열성능에 미치는 영향)

  • Kyoung-Chul, Kim;Kyung-Taek, Koh;Min-Su, Son;Gum-Sung, Ryu;Jae-Yoon, Kang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.428-434
    • /
    • 2022
  • This study intends to develop an eco-friendly concrete panel mixed with biochars. Experiments about mechanical and thermal properties were conducted on porous biochar concrete, which has insulation and carbon-capture performance. The concrete has a mixing ratio of 0, 5, 10, and 15 % for biochar and a water-binder ratio of 0.35. The unit weight, porosity, and permeability were measured to evaluate the mechanical characteristics. From the results, as the biochar mixing rate increased, the porosity and the permeability increased, but the unit weight decreased. Even though a decreased trend was observed in the compressive strength results, they satisfied the design standard. Since the thermal conductivity was decreased during the increase of contents, biochar could be considered an excellent material for insulation performance. In addition, regression analyses were conducted regarding the relationship of unit weight with porosity, compressive strength with thermal conductivity, and porous with thermal conductivity. From the regression, significant variables for expanding the scope of the application of biochar were presented.

Analysis of the Irradiated Solar Heat Effect on Indoor Thermal Environment of the Top Floor Units of Apartment Houses in the Summer - On Condition that All Openings of the Units are Opened - (공동주택의 하절기 자연환기 시 지붕면 일사수열이 최상층 실내온열환경에 미치는 영향 분석)

  • Choi, Dong-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.45-55
    • /
    • 2005
  • In the summer, the irradiated solar heat gain through the roof has an effect on the thermal environment of the top floor units of apartment houses. This paper investigated the differences of the indoor air temperature, globe temperature and thermal comfort index between the top floor unit and the middle floor unit by measuring them at the sample units on the condition that all the openings of the units are opened. The purpose of this paper is to provide quantitative data about the irradiated solar heat gain during the summertime through the roof of an apartment house and these data to be the source to reevaluate the appropriate roof insulation efficiency. From this study, we obtained three brief results as follows. Indoor air temperature difference between the two sample units shifts a day. Indoor air temperature at the top floor unit is $0{\sim}1.8^{\circ}C$ higher than that of the middle floor unit from 12:00 p.m. to 12:00 a.m. and $0{\sim}2.8^{\circ}C$ lower from 12:00 a.m. to 12:00 p.m. The evaluation of the indoor thermal comfort index and the globe temperature shows similar results as the indoor air temperature measuring. Results of this experiment verified the actual existence of indoor air temperature difference between the top floor unit and the middle one and this difference comes from the heat storage of the roof.

Effects of Dysprosium and Thulium addition on microstructure and electric properties of co-doped $BaTiO_3$ for MLCCs

  • Kim, Do-Wan;Kim, Jin-Seong;Noh, Tai-Min;Kang, Do-Won;Kim, Jeong-Wook;Lee, Hee-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.48.2-48.2
    • /
    • 2010
  • The effect of additives as rare-earth in dielectric materials has been studied to meet the development trend in electronics on the miniaturization with increasing the capacitance of MLCCs (multi-layered ceramic capacitors). It was reported that the addition of rare-earth oxides in dielectrics would contribute to enhance dielectric properties and high temperature stability. Especially, dysprosium and thulium are well known to the representative elements functioned as selective substitution in barium titanate with perovskite structure. The effects of these additives on microstructure and electric properties were studied. The 0.8 mol% Dy doped $BaTiO_3$ and the 1.0 mol% Tm doped $BaTiO_3$ had the highest electric properties as optimized composition, respectively. According to the increase of rare-earth contents, the growth of abnormal grains was suppressed and pyrochlore phase was formed in more than solubility limits. Furthermore, the effect of two rare-earth elements co-doped $BaTiO_3$ on the dielectric properties and insulation resistance was investigated with different concentration. The dielectric specimens with $BaTiO_3-Dy_2O_3-Tm2O_3$ system were prepared by design of experiment for improving the electric properties and sintered at $1320^{\circ}C$ for 2h in a reducing atmosphere. The dielectric properties were evaluated from -55 to $125^{\circ}C$ (at $1KHz{\pm}10%$ and $1.0{\pm}0.2V$) and the insulation resistance was examined at 16V for 2 min. The morphology and crystallinity of the specimens were determined by microstructural and phase analysis.

  • PDF

A Basic Study on the Air Circulation System for Heating using Solar and Geothermal Heat - Focused on Trombe Wall Thermal Storage Performance using Solar Heat - (태양열과 지열을 이용한 난방용 공기순환시스템 기초연구 - 태양열을 이용한 트롬월식의 축열성능 중심으로 -)

  • Kim, Byung-Yun;Choi, Yong-Seok
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.19 no.4
    • /
    • pp.49-56
    • /
    • 2017
  • Each country in the world currently concentrates on shifting into clean energy, which can be alternative energy, for global environment protection and solution to the problem of fossil fuel depletion. The Korean government is predicted to develop renewable energy, such as solar power, ground power, and offshore wind power, and to increase their supply ratios by ending the use of coals and nuclear power plants. This study conducted experiments on thermal storage performance of Trombe wall thermal storage materials using solar power and simulations in order to offer baseline data for the development of a hybrid air circulation system for heating that can maximize efficiency by simultaneously using solar and geothermal power. The study results are as follows: (1) In all the specimens with 3m, 5m, and 7m in the length of thermal storage pipe, $5.7^{\circ}C$, $7.8^{\circ}C$, and $10.5^{\circ}C$ rose, respectively, as the thermal storage effect of the specimens attaching insulation film and black tape to the general funnel. They were most excellent in terms of thermal storage effect. (2) As a result of thermal performance evaluation on the II type specimens, II-3 ($7.8^{\circ}C$ rise) > II-4 ($5.3^{\circ}C$ rise) > II-1 ($3.9^{\circ}C$ rise) > II-2 ($2.3^{\circ}C$ rise) was revealed, and thus II-3 (insulation film + black tape) was most effective as shown in the I type. (3) This study analyzed air current and temperature distribution inside of the greenhouse by linking actually measured values and simulation interpretation results through the interpretation of CFD (computational fluid dynamics). As a result, the parts absorbing heat and discharging heat around the thermal storage pipe could be visibly classified, and temperature distribution inside of the greenhouse around the thermal storage pipe could be figured out.

The Analysis of DC Plasmas Characteristics on SFSF6 and N2 Mixture Gases (SF6/N2 혼합기체의 DC 플라즈마 특성 분석)

  • So, Soon-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1485-1490
    • /
    • 2014
  • $SF_6$ gas has been used for power transformers or gas insulated switchgears, because it has the superior insulation property and the stable structure chemically. It has been, however, one of global warming gases and required to reduce the its amount. Some papers have reported that its amount could be reduced by mixing with other gases, such as $N_2$, $CF_4$, $CO_2$ and $C_4F_8$ and their mixture gases would cause the synergy effect. In this paper, we investigated the characteristics of DC plasmas on $SF_6$ mixture gases with $N_2$ at atmospheric pressure. $N_2$ gas is one of cheap gases and has been reported to show the synergy effect with mixing $SF_6$ gas, even though $N_2$ plasmas have electron-positive characteristics. 38 kinds of $SF_6/N_2$ plasma particles, which consisted of an electron, two positive ions, five negative ions, 30 excitation and vibration particles, were considered in a one dimensional fluid simulation model with capacitively coupled plasma chamber. The results showed that the joule heating of $SF_6/N_2$ plasmas was mainly caused by positive ions, on the other hand electrons acted on holding the $SF_6/N_2$ plasmas stably. The joule heating was strongly generated near the electrodes, which caused the increase of neutral gas temperature within the chamber. The more $N_2$ mixed-ratio increased, the less joule heating was. And the power consumptions by electron and positive ions increased with the increase of $N_2$ mixed-ratio.

Insulation Effect of Double Layered Bubble Sheet Application in Cold Weather Concrete and Initial Quality Control by Wireless Sensor Network (한중시공에서 2중 버블시트 포설에 따른 단열 효과분석 및 무선센서 네트워크에 의한 초기 품질관리)

  • Han, Min-Cheol;Seo, Hang-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2021
  • The objective of this study is to evaluate the effect of the application of double layered bubble sheet on the curing of slab and wall concrete placed at the job site in cold weather and to offer a feasibility of Concrete IoT Management System(CIMS), which is wireless sensor network developed by the authors, to manage early age quality of the concrete in terms of temperature, maturity and strength development. Test results indicated that the application of bubble sheet enhances the insulation performance, which results in an increase of the temperature by around 1~20. 6℃. It is found that CIMS can gather the temperature, maturity and strength development data from the sensors embedded from 30 m far from CIMS successfully. Predicted compressive strengths by CIMS had good agreement with measured ones within 2 MPa error level until 7 days. It is thought that the combination of the bubble sheet application for cold weather protection and CIMS for quality management tool in cold weather concreting contributes to shorten the time for the form removal by one day.

Utilization of Charcoal as an Environmentally Friendly Building Materials (II) - A Study on the Energy Saving and Sound Insulation Characteristics of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(II) - 목탄 함유 건축자재의 에너지 절감 및 차음 특성에 관한 연구)

  • Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.41-52
    • /
    • 2011
  • This study was carried out to investigate the effect of energy saving and sound insulation of building materials mixed with charcoal. To investigate the functionality of building based on the difference of construction materials, three different experimental buildings were constructed. They were buildings built with the conventional construction materials (A), the charcoal construction materials (B), and the charcoal-sericite construction materials (C). The study showed that energy consumption could be reduced approximately 9.5% and 14.5% by replacing A with B and C, respectively. Especially, it is revealed that the lower outdoor temperature was, the higher energy saving effect was. Also, after shutoff the boiler switch the decrease rate of room temperature of the one using B was lower than those of others using A and C so that the room temperature at the building using B was higher by $3.5{\sim}4.2^{\circ}C$ in the 1 meter air above the ground and by $4.4{\sim}5.4^{\circ}C$ on the floor surface after 12 hours passed. In the building noise test the heavy-and light-weight impact sound of the plate, represented by criterion of noise between floors in multi-story building, tended to decrease in the test sample containing charcoal.

Hall voltage measurement with respect to internal layout of REBCO coated conductors in an external magnetic field

  • Kim, Young Gon;Baek, Geonwoo;Han, Seunghak;Choi, Yojong;Kim, Junseong;Jeon, Haeryong;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.48-52
    • /
    • 2019
  • Recently, many studies have been reported on the magnetoresistance and Hall effect of REBCO thin films and bulk. The voltage interferes quench detection of high-temperature superconducting magnet and generates leakage current in no insulation high-temperature superconducting coil. Therefore, in this paper, experiments on magnetoresistance and Hall effect of commercial YBCO and GdBCO tapes have been carried out. As a result, anomalous voltages expected for the magnetoresistance and Hall effect of REBCO tapes were observed and analyzed. In addition, the voltage characteristics of REBCO have been identified, and the Hall coefficient are calculated for use in high magnetic field magnet applications.