• Title/Summary/Keyword: Insulation effect

Search Result 736, Processing Time 0.047 seconds

A Study on the Temperature Change of Green House using Aerogel (에어로젤을 사용한 시설하우스의 온도 변화에 대한 연구)

  • Yang, Ji-Ung;Lee, Eun-Suk;Ko, Joon-Young;Kim, Won-Kyung;Byun, Jae-Young;Park, Jin-Gyu;Choi, Won-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_2
    • /
    • pp.1067-1074
    • /
    • 2020
  • Green houses provide a more conditioned and warmer environment than the outside environment due to insulation. Currently used insulation materials include soft film (PVC, PE, EVA), foamed PE sheet, non-woven fabric, reflective film, and multi-layer insulation curtain, but there are many disadvantages and to compensate for this, silica aerogel insulation material with excellent warmth, light weight, and small volume Research using is in progress. In this study, the temperature change of the quadruple-structure green house and the temperature change in the dual-structure green house of soft film and silica airgel were investigated. The daytime temperature change was highest in A and A2 (soft film) at 10 to 16:00 after sunrise, but showed the lowest temperature at 17 to 18:00, which is the sunset time, showing the greatest change. The airgels of D and D2 showed the smallest change in temperature after sunrise and right after sunset. That is, it can be said that the airgel is hardly affected by external temperature. The temperature change at night was highest in D and D2 (aerogel) for both quadruple and dual structures. The temperature at night was measured higher in the quadruple structure than in the double structure. As for the ratio of the internal temperature to the external temperature for the quadruple structure and the double structure, D (aerogel) was not affected by the external temperature during the day in the quadruple structure and the double structure. D (Aerogel) seems to be able to reduce the damage caused by high temperatures in summer due to the high thermal insulation effect of the airgel, as the temperature rises above 4℃ at night. And in winter, it helps to save heating costs due to less heat emitted to the outside.

Thermal Property and Fire Resistance of Cellulose Insulation (섬유질 단열재의 열적 특성 및 내화성능)

  • Kwon, Young-Cheol;Seo, Seong Yeon;Kim, Sung Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2005
  • Cellulose insulation is primarily manufactured from recycled newsprint and treated with fire retardants for the fire resistance. Thanks to the fire retardants, it is not combustible and flammable. In addition to that, Its thermal resistance is much better than that of fiberglass or rock wool. It is made from waste paper and easily decayed when it is demolished, and it has small embodied energy. So it is very environment-friendly building material. For broader use of cellulose insulation in buildings in Korea, it is necessary to test its physical performance to compare the results with the requirements on the Korean Building Code. To this end, apparent thermal conductivity (ka) measurements of Korean-made loose-fill cellulose insulations were recently completed using equipment that was built and operated in accordance with ASTM C 518 and the fire resistance was tested in accordance with ASTM C 1485. Korean loose-fill cellulose has thermal conductivity about 5% greater than the corresponding U.S. product at the same density. This is likely due to differences in the recycled material being used. Both spray-applied and loose-fill cellulose insulation lose about 1.5% of their thermal resistivity for $5.5^{\circ}C$ increase in temperature. The fire resistance of cellulose insulation is increased in linear proportion to the increase of the rate of fire retardant. Thanks to the high fire resistance, cellulose insulation can be used as a substitution of Styrofoam or Urethane foam which is combustible. The thermal conductivity of cellulose insulation was $0.037-0.043W/m{\cdot}K$ at the mean specimen temperature from $4-43^{\circ}C$. It corresponds to the thermal resistance of "Na Grade" according to the Korean Building Code. The effect of chemical content on thermal conductivity was negligible for all but the chemical-free specimen which had the highest value for the thermal conductivity over the temperature range tested. The thermal resistance of cellulose insulation is better than that of fiberglass or rock wool, and its fire resistance is higher than that of Styrofoam or Urethane foam. Therefore it can be substituted for those above considering its physical performance. Cellulose insulation is no more expensive than Styrofoam or rock wool, so it is recommended to use it more widely in Korea.

Correlation Analysis between Climate and Contamination Degree through Multiple Regression Analysis (다중회귀 분석을 통한 기후 및 오손도 간의 상관관계 분석)

  • Kim, Do-Young;Lee, Won-Young;Shim, Kyu-Il;Han, Sang-Ok;Park, Kang-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05e
    • /
    • pp.49-52
    • /
    • 2003
  • The performance of insulators under contaminated conditions is the underlying and the most factor that determines insulation design for outdoor applications, Among the contamination factors, The sea salt is the most dangerous factor, and the salt factor have closed relation with climatic conditions, such as wind, temperature, humidity and so on, Effect of these factors to insulation system is different of each other, and need to show the correlation by multiple regression analysis techniques. In this paper, predicted and analyzed equivalent salt deposit density (ESDD) by change climatic condition through multiple regression analysis.

  • PDF

A Study of the Characteristics of a Partial Discharge of SF6 Following a Fault

  • Yoon, Dea-Hee;Song, Hyun-Jig;Lee, Kwang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.9
    • /
    • pp.18-24
    • /
    • 2007
  • When faults occur in the power equipment that is used a great deal in industrial sites, it may lead to fatal accidents that cause losses both economically and in manpower. In this paper, the effect of particle impact on the partial discharge of $SF_6$ gas was measured by simulating a partial discharge following the type of fault found in the GIS using $SF_6$ insulating gas as the insulating material. A spectrum analysis was performed on the radiate electromagnetic waves emitted upon partial discharge by using the UHF insulation diagnosis method. This subject of this study is insulation diagnosis by the measurement of radiate electromagnetic waves when particles exist in the GIS and power equipment insulated with $SF_6$ gas.

Breakdown Characteristics According to the Type & Gap of Rod-electrodes Using Imitation Air (제조공기를 이용한 봉전극의 형상 및 갭길이에 따른 절연파괴특성)

  • Lee, Jung-Keun;Lee, Su-Hyoung;Ahn, In-Seok;Jang, Jun-Oh
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.19-23
    • /
    • 2014
  • In this paper the experiments of breakdown characteristics of rod-electrodes by pressure and gap change of imitation-air were described. The results are fundamental data for electric insulation design of distribution power facilities which will be studied and developed in the future. And we could make an environment friendly gas insulation material with mataining dielectric strength by imitation air which generates a lower lever of the global warming effect.

Breakdown Characteristics of Rod-Electrodes using Imitation Air (제조공기를 이용한 Rod전극의 절연파괴특성)

  • Song, Jae-Woo;Jang, Se-Woo;Ahn, Ihn-Seok;Jang, Jun-Oh
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.16-20
    • /
    • 2013
  • In this paper the experiments of breakdown characteristics by pressure and gap change of imitation air were described. The results are fundamental data for electric insulation design of distribution power facilities which will be studied and developed in the future. And we could make an environment friendly gas insulation material with mataining dielectric strength by Imitation Air which generates a lower lever of the global warming effect.