• Title/Summary/Keyword: Insulation diagnostic

Search Result 111, Processing Time 0.024 seconds

Development of an Adaptive Neuro-Fuzzy Techniques based PD-Model for the Insulation Condition Monitoring and Diagnosis

  • Kim, Y.J.;Lim, J.S.;Park, D.H.;Cho, K.B.
    • Electrical & Electronic Materials
    • /
    • v.11 no.11
    • /
    • pp.1-8
    • /
    • 1998
  • This paper presents an arificial neuro-fuzzy technique based prtial discharge (PD) pattern classifier to power system application. This may require a complicated analysis method employ -ing an experts system due to very complex progressing discharge form under exter-nal stress. After referring briefly to the developments of artificical neural network based PD measurements, the paper outlines how the introduction of new emerging technology has resulted in the design of a number of PD diagnostic systems for practical applicaton of residual lifetime prediction. The appropriate PD data base structure and selection of learning data size of PD pattern based on fractal dimentsional and 3-D PD-normalization, extraction of relevant characteristic fea-ture of PD recognition are discussed. Some practical aspects encountered with unknown stress in the neuro-fuzzy techniques based real time PD recognition are also addressed.

  • PDF

The Feature Extraction of Partial Discharge Electromagnetic Wave utilizing Signal Processing Techniques (신호처리 기술에 의한 부분방전 방사전자파의 특징 추출)

  • 이현동;이광식
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.1
    • /
    • pp.44-49
    • /
    • 2002
  • In recent years, diagnostic techniques have been investigated to detect a partial discharge(PD) in a high voltage electrical equipment. Because PD signal is very sensitive and difficult to suppress strong noises such as narrow-band radio frequency noise and random noise, the accuracy and credibility of PD measurement might be influenced by surrounding interference. Using the technique of PD detection by electromagnetic wave, we have studied the characteristics of both PD and substation-in interference signal. Also, we propose a wavelet packet transform based technique to perform a feature extraction from the interference and PD signal and a classification of the extracted features. The results show that time-frequency characteristics between PD and interference can be obviously distinguished. It is helpful for the development of the insulation diagnosis technique.

Design of Leakage Current Detecting Equipment of an Arrester Diagnostic Type in a Distribution Line (배전선로용 피뢰기 진단형 누설전류 검출장치 설계)

  • Yoon, Gi-Gab;Park, Jong-Beom;Yoon, Suk-Mu;Lee, Seung-Hak;Kim, Hong-Pil;Kim, Kwang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.501-503
    • /
    • 2000
  • Since an arrester has been generally used at the distribution line and abroad for the protection of electrical equipments against overvoltage (or abnormal surge) taking place in or from an electrical system, a fault, especially, in the distribution line is very likely to result in the destruction of insulation of other protection devices to cause an overall paralysis of a power system, a chaos. Considering the importance of arresters, its earlier replacement than its proposed life cycle causes an economical loss, and a negligence not to replace or repair it in time gives rise to a crucial accidence. The purpose of this paper is to invent an electric leakage current detector and to solve such problems by the continuous and regular inspection of an arrester.

  • PDF

An Amendment of the VLF tanδ Criteria to Improve the Diagnostic Accuracy of the XLPE-insulated Power Cables (XLPE 절연케이블의 열화진단 정확도 향상을 위한 VLF tanδ 판정기준 개선)

  • Lee, Jae-Bong;Jung, Yeon-Ha
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.9
    • /
    • pp.1644-1651
    • /
    • 2010
  • VLF $tan{\delta}$ diagnosis technology is introduced in IEEE Std 400 and proposed as evaluation criterion in an effective way of detecting water tree which mainly causes the failure of XLPE insulated cables. In order to inspect the accuracy of the VLF $tan{\delta}$ method for XLPE insulated power cables in Korean distribution system, diagnosis for 41 cables which were being serviced in the fields has been carried out and they were removed for AC breakdown voltage test after. Regarding the 41 cables, it was hard to confirm any relation between the VLF $tan{\delta}$ values and AC breakdown voltages and also water tree in the insulation was not detected. However, the other cables were failed several days after the diagnosis of the 41 cables. Water trees were found and their VLF $tan{\delta}$ values were also much higher than the criterion of IEEE standard. It has been ascertained that we need to change the IEEE criteria in order to improve the accuracy of detecting water trees by additional analyzing of field examples of failure and case studies from overseas countries and therefore amended VLF $tan{\delta}$ test voltage and evaluation criteria have been proposed.

A Study on the Pattern Recognition Using of HFPD the Neural Networks and ${\Delta}F$ (신경회로망 및 ${\Delta}F$를 이용한 부분방전 패턴인식에 관한 연구)

  • Lim, Jang-Seob;Kim, Duck-Keun;Kim, Jin-Gook;Noh, Sung-Ho;Kim, Hyun-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11a
    • /
    • pp.251-254
    • /
    • 2004
  • The aging diagnosis technique using partial discharge detection method detects partial discharge signals cause of power equipment failuer and able to forecast the aging state of insulation system through analysis algorithm, in this paper accumulates HFPD signal during constant scheduled cycles to build HFPD pattern and then analyzes HFPD pattern using statistical parameters and ${\Delta}F$ pattern. The 3D pattern is composed of detected signal frequency, amplitude and repeated number and the FRPDA(frequency resolved partial discharge analysis) technique is used in 3D pattern construction. The ${\Delta}F$ pattern shows variation characteristics of amplitude gradient of consecutive HFPD signal Pulses and able to classify discharge types-internal discharge, surface discharge and coronal discharge etc. Fractal mathematics applied to ${\Delta}F$ pattern quantification and neural networks is used in aging diagnostic algorithm.

  • PDF

UHF Narrow Band Type Partial Discharge Diagnosis Method for the Internal Insulation Performance Verification of the Gas Insulated Switchgear (가스절연 개폐장치의 내부절연 성능검증을 위한 UHF 협대역 부분방전 진단법)

  • Song Won-Pyo;Kim Jung-Bae;Kim Min-So;Jung Jae-Ryong;Park Seung-Jae;Ko Heui-Suk
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.414-420
    • /
    • 2005
  • A method for partial discharge diagnosis based on UHF narrow band type for GIS has been developed and calibrated. In generally, PD cannot be directly measured under on-line condition, but we can indirectly measure the electromagnetic wave made by PD using the high-frequency antenna. Compared with VHF band, electromagnetic waves of UHF band have a low influence for external noise in high-voltage substation. Therefore, we can detect the real abnormality with several pC in GIS using UHF narrow-band type method. For the case of no internal VHF sensor for GIS of the domestic substation, it has applied to use the external UHF sensor attached in spacer in GIS of existing substation. In this paper, we firstly described the technique of partial discharge measurement using frequency analysis and phase analysis in UHF band. Secondly, we presented the results of sensitivity test, the relationship of dBm-pC and diagnosis result of the cause of PD source by phase analysis. And then, we report the diagnosis result of partial discharge on the real GIS in domestic substation. These results make above method applicable for measurement of quantity and cause of PD for real operation GIS in high-voltage substation.

Effect of Space Charge Density and High Voltage Breakdown of Surface Modified Alumina Reinforced Epoxy Composites

  • Chakraborty, Himel;Sinha, Arijit;Chabri, Sumit;Bhowmik, Nandagopal
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.3
    • /
    • pp.121-124
    • /
    • 2013
  • The incorporation of 90 nm alumina particles into an epoxy matrix to form a composite microstructure is described in present study. It is shown that the use of ultrafine particles results in a substantial change in the behavior of the composite, which can be traced to the mitigation of internal charges when a comparison is made with conventional $Al_2O_3$ fillers. A variety of diagnostic techniques have been used to augment pulsed electro-acoustic space charge measurement to provide a basis for understanding the underlying physics of the phenomenon. It would appear that, when the size of the inclusions becomes small enough, they act cooperatively with the host structure and cease to exhibit interfacial properties. It is postulated that the $Al_2O_3$ particles are surrounded by high charge concentrations. Since $Al_2O_3$ particles have very high specific areas, these regions allow limited charge percolation through $Al_2O_3$ filled dielectrics. The practical consequences of this have also been explored in terms of the electric strength exhibited. It would appear that there was a window in which real advantages accumulated from the nano-formulated material. An optimum filler loading of about 0.5 wt.% was indicated.

Temperature Rise and Dielectric Characteristics of Distribution Transformers with Over-Loading Operation (배전용변압기의 부하운전에 의한 온도 및 유전특성 분석)

  • Kim, Byung-Sook;Lee, Byung-Sung;Song, Il-Keun;Han, Byoung-Sung;Joung, Jong-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.104-110
    • /
    • 2007
  • Temperature rise characteristics of medium voltage class transformers and dielectric characteristics of its insulation oil according to the loading rate were investigated using the transformer that has thermocouples embedded in the windings. The hottest-spot of the transformer locates at about 2/3 height of the windings where they adjoin each other among the 3 phase windings. The temperature difference between the hottest-spot and top-oil is about $17[^{\circ}C]$ and the value keeps uniformly in short time after changing the loading rate. Capacitance of the oil varies in inverse proportion to temperature and the inclination rate is about -0.0106 that is not dependent on the aging rate. On the other hand the capacitance is increased depending on the aging rate, so the capacitance characteristics of the oil could be applied to the diagnostic technique.

The method of in-situ ASTR method diagnosing wall U-value in existing deteriorated houses - Analysis of influence of internal surface total heat transfer rate -

  • Kim, Seo-Hoon;Kim, Jong-Hun;Jeong, Hakgeun;Song, Kyoo-dong
    • KIEAE Journal
    • /
    • v.17 no.4
    • /
    • pp.41-48
    • /
    • 2017
  • Purpose : Currently, 25% of the domestic energy consumption structure is used as building energy, and more than 18% of this energy is consumed in the residential. Accordingly, various efforts and policies that can save energy of the building is being performed. The various researchers are conducting research to diagnose the thermal performance of existing buildings. This study is to apply in the field of precision thermal insulation performance diagnostic method for thermal performance analysis of existing detached house in Seoul, Gangreung, Gyeongju, Pohang. And this paper is analyzed quantitatively measure the existing detached house energy performance. Method: Research methodology analyzed the thermal performance over the Heat Flow Meter method by applying the measurement process and method by applying the criteria of ISO 9869-1 & ASTR method. In this study, the surface heat transfer coefficient was calibrated by applying indoor surface heat transfer resistance with reference to ISO 6946 standard. The measurement error rate between the HFM diagnosis method and the ASTR diagnosis method was reduced and the measurement reliability was obtained through measurement method error verification. Result : As a result of the study, the thermal performance vulnerable parts of the building were quantitatively analyzed, and presented for methods which can be improved capable of efficient energy use buildings.

Study on Decomposition Gas Characteristics and Condition Diagnosis for Gas-Insulated Transformer by Chemical Analysis

  • Kim, Ah-Reum;Kwak, Byeong Sub;Jun, Tae-Hyun;Park, Hyun-Joo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.447-454
    • /
    • 2020
  • Since SF6 gas was discovered in the early 1900s, it has been widely used as an insulation material for electrical equipment. While various indicators have been developed to diagnose oil-immersed transformers, there are still insufficient indicators for the diagnosis of gas-insulated transformers. When necessary, chemical diagnostic methods can be used for gas-insulated transformers. However, the field suitability and accuracy of those methods for transformer diagnosis have not been verified. In addition, since various types of decomposition gases are generated therein, it is also necessary to establish appropriate analysis methods to cover the variety of gases. In this study, a gas-insulated transformer was diagnosed through the analysis of decomposition gases. Reliability assessments of both simple analysis methods suitable for on-site tests and precise analysis methods for laboratory level tests were performed. Using these methods, a gas analysis was performed for the internal decomposition gases of a 154 kV transformer in operation. In addition, simulated discharge and thermal fault experiments were demonstrated. Each major decomposition gas generation characteristics was identified. The results showed that an approximate diagnosis of the inside of a gas-insulated transformer is possible by analyzing SO2, SOF2, and CO using simple analysis methods on-site. In addition, since there are differences in the types of decomposition gas generation patterns with various solid materials of the internal transformer, a detailed examination should be performed by using precise analysis methods in the laboratory.