• Title/Summary/Keyword: Insulation composition

Search Result 86, Processing Time 0.023 seconds

A Study on the Evaluation Method for Thermal Lifetime Diagnosis of Insulating Material for Mold Transformer (몰드변압기용 절연재료의 열적 수명진단을 위한 평가법 연구)

  • Cheong, Jae-Weon;Park, Hong-Tae;Oh, Il-Sung;Seo, Jung-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.1000-1002
    • /
    • 1999
  • In this study, we were developed to provide a method for evaluating insulation systems for mold transformers with high-voltage ratings greater than 600V, in order to establish a uniform method for determining the temperature classification of mold transformer insulation system by testing rather than by chemical composition. Since these procedures are considered to be new, and have been tested exhaustively, further testing may prove the need for future revisions.

  • PDF

Eco-friendly Solid Insulated Switchgear for IT Enabled (IT Enabled 친환경 고체절연 Switchgear)

  • Lee, J.H.;Ma, J.H.;Yu, R.;Lee, J.G.;Tak, S.J.;Park, J.N.;Lee, S.W.;Ahn, H.I.;Kim, Y.G.;Shin, Y.J.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10c
    • /
    • pp.241-243
    • /
    • 2005
  • This paper describes development of intelligent solid insulated switchgear for next generation distribution line. Nowadays, for switchgear, increased to substitute eco-friendly environment and smart ability. In relation to a project to development of intelligent solid insulated switchgear, a comparison of insulation for substitution insulation medium, to show a composition of intelligent solid Insulated switchgear and valuation on characteristics for each of module.

  • PDF

Breakdown Characteristics of Teflon by N2-O2 Mixture gas (N2-O2 혼합가스에 따른 Teflon의 절연파괴특성)

  • Choi, Eun-Hyeok;Choi, Byoung-Sook;Park, Sung-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.69-74
    • /
    • 2018
  • With the increasing development of industrial society and the availability of high quality electrical energy, the simplification of operation and maintenance procedures is required, in order to ensure the reliability and safety of electrical systems. In this paper, the dielectric breakdown characteristics of $N_2-O_2$ mixed gas solid insulation, which is used as an alternative to SF6 in various electric power facilities, are verified. When the gas mixture has a composition ratio similar to that of the atmosphere, the dielectric breakdown characteristics are relatively stabilized. It was confirmed that the breakdown voltage of the gas in the electrode near an equal electric field increased with increasing pressure according to Paschen's rule. The breakdown voltage of the surface increased linearly with increasing pressure, and the difference was caused by the mixing ratio of $O_2$ gas. This change in the surface insulation breakdown voltage was caused by the influence of the electrically negative $O_2$ gas and the intermolecular collision distance. In this study, the influence of the intermolecular impact distance was larger (than that in the absence of the electrically negative $O_2$ gas). The breakdown voltage relation applicable to Teflon according to the surface insulation characteristics was calculated. The characteristics of the surface insulation properties of Teflon, which is used as a solid insulation material, were derived as a function of pressure. It is thought that these results can be used as the basic data for the insulation design of electric power facilities.

A Study on the Heat Transfer Phenomenon through the Glazing System (창호를 통한 열전달 현상에 관한 연구)

  • Kang, Eun-Yul;Oh, Myung-Won;Kim, Byung-Sean
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.32-37
    • /
    • 2009
  • An energy loss through the window system occupies about 10 to 30 percent on energy consumption of the whole building. That is the reason, several elements for a building composition of window system are the weakest from the heat. Insulation performance increases for the reducing heat loss. Heat transfer through the window system that is reducing heat transfer through conduction, convection and radiation. Insulation performance reinforcement methods classify improving heat specific quality of window system and improving efficiency of whole window system. The most application method among each methods is reducing emission ratio of the window system(Low-E glass), increasing a number of glazing(multiple window) and a method of vacuuming between glazing and glazing. Therefore this study is investigated a sort of glazing and specific character, U-value calculation with changing glazing thickness and calculation of temperature distribution and U-value with a glazing charging gas kind from double glazing. For a conclusion, an aspect of U-value figure at the smallest value case of vacuum glazing with Low-E coating. That means insulation efficiency is the best advantage during a building plan selecting vacuum glazing with Low-E coating for a energy saving aspect. In this way, U-value become different the number of glazing, coating whether or not and selecting injection gas. Therefore selecting of glazing is very important after due consideration by a characteristic and use of building and consideration of strong point and weak point.

  • PDF

The Research on Insulation Design for Transmission Class HTS Transformer with Composite Winding (복합 권선형 송전급 고온초전도 변압기의 절연설계 연구)

  • Cheon, Hyeon-Gweon;Kwag, Dong-Soon;Choi, Jae-Hyeong;Joung, Jong-Man;Kim, Hyun-Hi;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.204-205
    • /
    • 2006
  • In the response to the demand for electrical energy, much effort aimed to develop and commercialize high temperature superconducting (HTS) power equipments has been made around the world. In Korea, companies and universities are developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects. The composite winding of transmission class HTS transformer is concentrically arranged H1-L-H2 from center. H1 is continuous disk type, L is layer type and H3 is continuous disk type. For the development of transmission HTS transformer with composite winding, the cryogenic insulation technology should be established. We have been analyzed insulation composition and investigated electrical characteristics such as breakdown of $LN_2$, barrier, kapton films, surface flashover on FRP in $LN_2$. We are going to compare with measured each value and apply the value to most suitable insulating design of the HTS transformer.

  • PDF

Epoxy-Based Siloxane/Silica Composites for Electronic Packaging by Composition and Molecular Structure of Siloxane, and Analysis of Changes in Properties (조성 및 실록산 분자 구조에 따른 전자 패키징용 에폭시 기반 실록산/실리카 복합체의 물성 변화 분석)

  • Junho Jang;Dong Jun Kang;Hyeon-Gyun Im
    • Journal of Powder Materials
    • /
    • v.30 no.4
    • /
    • pp.346-355
    • /
    • 2023
  • Epoxy-based composites find extensive application in electronic packaging due to their excellent processability and insulation properties. However, conventional epoxy-based polymers exhibit limitations in terms of thermal properties and insulation performance. In this study, we develop epoxy-based siloxane/silica composites that enhance the thermal, mechanical, and insulating properties of epoxy resins. This is achieved by employing a sol-gel-synthesized siloxane hybrid and spherical fused silica particles. Herein, we fabricate two types of epoxy-based siloxane/silica composites with different siloxane molecular structures (branched and linear siloxane networks) and investigate the changes in their properties for different compositions (with or without silica particles) and siloxane structures. The presence of a branched siloxane structure results in hardness and low insulating properties, while a linear siloxane structure yields softness and highly insulating properties. Both types of epoxy-based siloxane/silica composites exhibit high thermal stability and low thermal expansion. These properties are considerably improved by incorporating silica particles. We expect that our developed epoxy-based composites to hold significant potential as advanced electronic packaging materials, offering high-performance and robustness.

The Electrical Properties of High Voltage Mutilayer Chip Capacitor with X7R by addition of Er2O3 and Glass Frit (고압용 X7R 적층 칩 캐패시터의 Er2O3 및 유리프릿 첨가에 따른 전기적 특성)

  • Yoon, Jung-Rag;Kim, Min-Kee;Chung, Tae-Seog;Woo, Byoung-Chul;Lee, Seog-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.5
    • /
    • pp.440-446
    • /
    • 2008
  • To manufacture the MLCC with X7R for high voltage stability, $BaTiO_3-MgO-MnO_2-Y_2O_3$ with $(Ba_{0.4}Ca_{0.6})SiO_3$ glass frit was formulated. Based on this composition, the addition of $Er_2O_3$ showed that TCC(Temperature Coefficient Capacitance) at $85^{\circ}C$ was improved from 5 % to ${\sim}0\;%$, but the dielectric constant and IR (Insulation Resistance) were decreased. The glass frit improved the dielectric constant and IR, so the appropriate contents of $Er_2O_3$ and glass frit were 0.6 mol% and 1 wt%, respectively. It showed that the dielectric constant and RC constant were 2,550 and 2,000 (${\Omega}F$), respectively in the sintering condition at $1250^{\circ}C$ in PO2 $10^{-7}$ Mpa. The MLCC with $3.2{\times}1.6$ (mm) size and $1\;{\mu}F$ was also suited for X7R with the above composition.

A Study on the Current Status of Building Envelope in detached houses of near Local Cities - with Staff of Small-sized Architectural Design Firms in Gwangju and Jeonnam - (지방도시근교 단독주택의 외피구성 현황에 관한 연구 - 광주광역시/전남 소규모 건축설계사무소 실무자를 대상으로 -)

  • Park, Sung-Jin;Lee, Chang-Jae
    • KIEAE Journal
    • /
    • v.13 no.2
    • /
    • pp.53-60
    • /
    • 2013
  • This study examined the building envelope structure used in small housings near urban area which have not good energy source in relation to the application of passive design for energy saving of small-sized architectural design firms in local cities and aimed to provide the basic materials of future design direction of designers and housing owners by analyzing economy of a project in order to know the amount of energy saving and additional expenses depending on the building envelope pattern. As a result of comparing and examining the energy saving cost from the period of use compared to investment by the thickness of insulating materials based on building envelope pattern for energy saving, it was found that the thicker the insulating materials are, the more energy saving amount is. While the current bead-type insulating materials have short payback period due to low initial investment, extruded insulating materials show the difference of five years compared to bead-type insulation because of its high initial investment.

Synthesis and Properties of High Voltage Silicone Rubber by Platinum-based Flame Retardant

  • Jung, Se-Young;Kim, Byung-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.283-292
    • /
    • 2006
  • So that high-strength and electrical properties apply by excellent high voltage insulator electricity material, ATH content and platinum-based flame retardant that influence in flame retardant and tracking characteristic among composite of silicone rubber studied mechanical strength and influence getting to electrical properties. Composition of ${\alpha}$, ${\omega}-vinyl$ poly (dimethyl-methylphenyl) siloxane(VPMPS) of a polymer quantity made doing mole of D4, $D3^{Me,Ph}$ and VMS by 1000:15:0.2 mole ratio and uses basic catalyst tetramethylammonium silanolate(TMAS) and do opening equilibrium polymerization to be used to main polymer for high voltage insulation insulator. Control ATH content and content of platinum-based flame retardant and made high voltage insulation silicone rubber. Measured mechanical strength of making silicone rubber using UTM, and tracking characteristic according to standard of IEC 60587, flame retardant test studied effect that flame retardant characteristic gets in tracking characteristic, measuring according to UL94V method of test.

Improvement of Electrical and Thermal Characteristics of Nano-Micro Epoxy Composite

  • Cho, Sung-Hoon;Kim, Yu-Min;Kwon, Jung-Hun;Lim, Kee-Joe;Jung, Eui-Hwan;Lee, Hung-Kyu;Shin, Pan-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.4
    • /
    • pp.160-163
    • /
    • 2011
  • Polymer nanocomposite has been attracting more attention as a new insulation material because homogeneous dispersion of nano-sized inorganic fillers can improve various properties significantly. In this paper, various kinds of epoxy-based nanocomposites were made, and the AC breakdown strengths of Nano filler and micro-$SiO_2$ filler mixtures of epoxy-based composites were analyzed using sphere-to-sphere electrodes. Moreover, nano- and microfiller combinations were investigated as an approach to practical application of nanocomposite insulation materials. Its composition ratio was 100 (resin):82 (hardener):1.5 (accelerator). AC breakdown tests were performed at room temperature ($25^{\circ}C$), $80^{\circ}C$, and $100^{\circ}C$ in the vicinity of $T_g$ ($90^{\circ}C$). Thermal conductivity was measured using TC-30.