• Title/Summary/Keyword: Insulation characteristics

Search Result 1,267, Processing Time 0.035 seconds

Characteristics of Lightweight and Thermal Insulation of Bituminous Coal Bottom Ash (유연탄 bottom ash의 경량 및 단열 특성)

  • Lee, Jong Gyu;Yeo, Woon Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 2018
  • Research on FA(Fly ash) is actively carried out, while the research on BA(Bottom ash) is not so, and research on BA recycling field is urgently required. Therefore, in this study, we investigated the lightweight and thermal insulation characteristics of BA mortar by comparing BA mortar made with porous dry BA(air-cooled) and general mortar. To investigate the lightweight of BA, density test, unit volume mass test and SEM(Scanning Electron Microscope) test were performed. BA mortar and general mortar molds were prepared for the thermal insulation test at room temperature and humidity environment determined by KS A 0006 and they were dried at the temperature of $105{\pm}2^{\circ}C$ until the weight became constant. As a result of the lightweight test, the lightweight of BA mortar is about 30% lighter than the general mortar. Therefore, BA is expected to contribute to reduce the building load when used as building material. As a result of thermal insulation test, the thermal conductivity of BA mortar is about 30% better than that of general mortar.

Insulation Aging Characteristic Assessment on the Power cables with the Comparative Analysis Between Destructive and Nondestructive Diagnosis (파괴 및 비파괴진단 비교분석을 통한 케이블 열화특성평가)

  • Yi, Dong-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.6
    • /
    • pp.104-108
    • /
    • 2009
  • The insulation aging characteristics and structural analysis test were performed to analyze the correlations among the insulation deterioration, diagnostic results and the breakdown strength for the underground power cables. From the results of the degree of crosslinking test, hot-oil test etc., it could be confirmed that there were no manufacturing defects in the power cables under test. From the results of the water tree test and chemical structural analysis, it could be confirmed that the aging status of cable under test were very poor, especially for B-Phase and the degree of aging was increased in the orders of A, C and B-phase. From the above results, it could be concluded that the insulation aging characteristic analysis results were well consistent with the diagnostic and breakdown test results, and also confirmed that the diagnostic system under consideration was successful to discriminate the bad cables which is likely to cause cable system failure.

A Study on the Insulation Basis of Hts Transformer (초전도 변압기의 절연기반 연구)

  • Cheon, Hyeon-Gweon;Kwag, Dong-Soon;Yun, Mun-Soo;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.639-642
    • /
    • 2005
  • HTS Transformer developing is developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects. Therefore, we prepared the model, that is Z continuous winding from Kapton insulated Cu tape for a small simulated the HTS transformer. For the development of electrical insulation design of a HTS transformer with Z continuous winding, we have been discussed insulation composition and investigated breakdown characteristics such as breakdown of liquid $N_2(LN_2)$, polymer and surface flashover on FRP and breakdown-surface combination in $LN_2$. Also we have been designed and manufactured a bobbin that has spiral slot for the Z continuous winding. The Z continuous winding mini-model from Kapton film insulated Cu tape for simulated 22.9kV class HTS transformer has been constructed using 0.1 % breakdown strength obtained by Weibull distribution. The widing model was measured their insulation characteristics such as ac (50kV, 1min) and impulse (154kV, $1.2\times50{\mu}s$ full wave, 3 times) withstand test and its excellent performance was confirmed.

  • PDF

Development of Enhanced Insulator for Section Insulator (유리섬유가 충진된 PTFE 절연재를 채용한 이상용 절연구분장치 개발)

  • Cho, Ho-Ryung;Joo, Jong-Min
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2173-2174
    • /
    • 2011
  • At the moment, the section insulators for different phases used for over head contact wire system has been all imported since its first application. However, because the section insulators need frequent maintenance and replacement due to the wear by the friction with pantograph and the contamination, which causes its life shorter than as expected, it is required to develop the insulation material with better wear-resistance characteristics and contamination-resistance characteristics. In this thesis, the author developed the section insulator which adopts Teflon tube insulation material which is composed of the Teflon material with the excellent electrical characteristics and wear-resistance characteristics for a longer expected life than that made of conventional FRP.

  • PDF

Propagation characteristics of AE signal in the connection of GIS (GIS 결합부의 음향신호 전달특성)

  • 서판석;최남호;구경완;김종석;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.311-314
    • /
    • 2001
  • This paper describes the simulation study, conducted on the propagation characteristics of AE signal in the connection of GIS. In the high voltage and large power system, the equipment with SF$\sub$6/ gas insulation which consists of the component part enclosed in the compressed gas has less affected by the environment than with air insulation. When the breakdown in the electric installation occurs, it takes much time to repair them though. Therefore it is very important to diagnose the propagation characteristics of AE signal in the GIS. So, in this investigation, we make a plane model of 362 kV GIS and modal and harmonic analysis to observe the vibro-acoustic property. Through the result of the analysis, we can make a further understanding on the vibro-acoustic characteristics of AE singnal in the connection of GIS.

  • PDF

A Study on the Floor-Specific Characteristics of Road Traffic Noise in Apartment Buildings (공동주택의 층별 도로교통 소음의 전달 특성에 관한 연구)

  • Ham, Jin-Sik
    • Journal of the Korean housing association
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • This study is an attempt to understand the floor-specific characteristics of facade road traffic noise in apartment buildings. For this purpose, it sampled a total of seven roadside apartment building complexes: three with no soundproof bar barrier installed at roadside, one with a forest buffer zone, one with a sound-absorbing hill, and two with soundproof barriers. The measured noise level was highest on the 5th floor of apartment buildings with no soundproof barrier, and the upper stories from the 5th floor showed lower-noise measurements in order. For apartment buildings with soundproof barriers, however, the noise level was lower on the 10th floor than the 5th floor. Two apartment building groups--one with a sound-absorbing hill and the other with no soundproof barrier--showed similar measurement results in the floor-specific characteristics of facade road traffic noise. This suggests that such installations have little sound insulation effect. In the apartment building complex with a forest buffer zone around it, a slight sound insulation effect was measured on the lower floors of the buildings.

Experimental Study on the Evaluation of Heat Transfer Characteristics of Buildings' External Walls -Focusing on the winter heat transfer characteristics of four experimental model buildings in accordance with the location of insulation- (건물(建物) 외벽(外壁)의 전열특성(傳熱特性) 평가(評價)에 관한 실측(實測) 연구(硏究) - 단열재 위치에 따른 실험용 건물의 겨울철 열특성 평가를 중심으로 -)

  • Sohn, J.Y.;Yoon, D.W.;Park, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.3
    • /
    • pp.228-234
    • /
    • 1989
  • This paper describes the experimental thermal performance results of four experimental model buildings insulated differently. For the purpose of examining the thermal characteristics of external walls and indoor thermal conditions, four experimental model buildings are constructed as externally insulated, internally insulated, non-insulated &light-weight curtain wall types with different K-values and heat capacities, respectively.
    Through the measurements of temperatures at various points and solar insolation, the effects of insulation and heat capacities are evaluated, and the evaluated effects of each experimental model buildings are compared. Hence, the characteristics of temperature profiles, time-lag effects and decrement factors are discovered.

  • PDF

Mechanical Properties of External Thermal Insulation Composite System with Quasi-Non-Combustible Performance (준불연 외단열시스템의 역학적 특성에 관한 연구)

  • Choi, Ki-Sun;Ha, Soo-Kyung;Oh, Keun-Yeong;Park, Keum-Sung;Ryu, Hwa-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.507-518
    • /
    • 2021
  • The application of an adhesive calcium carbonate-based hybrid insulation board with quasi-combustibility in the external thermal insulation composite system(ETICS) ensures effective thermal performance and fire safety. This study aimed to conduct a mechanical test of the quasi-non-combustible hybrid insulation board as well as its constituent materials to obtain the basic data for the structural design of the adhesive ETICS. Test specimens were fabricated based on domestic and foreign test standards to examine and evaluate their tensile, compressive, flexural, and shear strengths. The strength characteristics of the quasi-non-combustible hybrid insulation board were identified from the test results, which verified that the minimum required physical properties suggested by the current KS M ISO 4898 were met. Furthermore, the quasi-non-combustible ETICS used in this study was found to be suitable for use as an external insulation system for walls unless subjected to continuous gravity load, such as a heavy exterior finish.

Surface Discharge Characteristics Study on the Laminated Solid Insulator in Quasi-Uniform Electric Field with Dry Air

  • Min, Gyeong-Jun;Bae, Sungwoo;Kang, Byoung-Chil;Park, Won-Zoo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.603-609
    • /
    • 2015
  • Dry air is an excellent alternative to $SF_6$ gas and is used as an insulation gas in Eco-friendly Gas Insulated Switchgears (EGISs), which has gained popularity in industry. Solid insulators in EGIS play an important role in electrical insulation. On the other hand, surface discharge can occur easily when solid insulators are used. This paper explored the surface discharge characteristics on the structure of three-layered laminated solid insulators to elevate the flashover voltage. A laminated solid insulator was inserted after the quasi-uniform electric field was formed in the test chamber. Dry air was then injected to set the internal pressure to 1 ~ 6 atm, and the AC voltage was applied. When identical solid insulators were stacked, the surface discharge characteristics were similar to those of a single solid insulator. On the other hand, the flashover voltage rose when the middle part was thicker and had lower permittivity than the top and bottom parts in the laminated solid insulator. Based on experimental results, when stacking a solid insulator in three layers, the middle part of the solid insulator should be at least four times as thick as the top and bottom parts and have lower permittivity than the others. In addition, the flashover voltage increased with increasing gas pressure on the surface of the laminated solid insulator due to the gas effect. This study may allow insulation design engineers to have useful information when using dry air for the insulation gas where the surface discharge can occur.

Influence of SF6/N2 Gas Mixture Ratios on the Lightning Streamer Propagation Characteristics of 22 kV MV Circuit Breaker

  • Gandhi, R.;Chandrasekar, S.;Nagarajan, C.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1663-1672
    • /
    • 2018
  • In recent times, gas insulated medium voltage (MV) circuit breakers (CB) form a vital component in power system network, considering its advantages such as reduced size and safety margins. Gas insulation characteristics of circuit breakers are generally measured by lightning impulse (LI) test according to IEC standard 60060-1 as a factory routine test. Considering the environmental issues of $SF_6$ gas, many research works are being carried out towards the mixture of $SF_6$ gases for high voltage insulation applications. However, few reports are only available regarding the LI withstand and streamer propagation characteristics (at both positive and negative polarity of waveform) of $SF_6/N_2$ gas mixture insulated medium voltage circuit breakers. In this paper, positive and negative polarity LI tests are carried out on 22 kV medium voltage circuit breaker filled with $SF_6/N_2$ gas mixture at different gas pressures (1-5 bar) and at different gas mixture ratios. Important LI parameters such as breakdown voltage, streamer velocity, time to breakdown and acceleration voltage are evaluated with IEC standard LI ($1.2/50{\mu}s$) waveform. Weibull distribution analysis of LI breakdown voltage data is carried out and 50% probability breakdown voltage, scale parameter and shape parameter are evaluated. Results illustrate that the $25%SF_6+75%N_2$ gas filled insulation considerably enhances the LI withstand and breakdown strength of MV circuit breakers. LI breakdown voltage of circuit breaker under negative polarity shows higher value when compared with positive polarity. Results show that maintaining the gas pressure at 0.3 MPa (3 bar) with 10% $SF_6$ gas mixed with 90% $N_2$ will give optimum lighting impulse withstand performance of 22 kV MV circuit breaker.