• Title/Summary/Keyword: Insulation characteristics

Search Result 1,267, Processing Time 0.028 seconds

Analysis of Shear Behavior and Fracture Characteristics of Plywood in Cryogenic Environment (극저온 환경 하 플라이우드의 전단 거동 및 파손 특성 분석)

  • Son, Young-Moo;Kim, Jeong-Dae;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.394-399
    • /
    • 2019
  • Plywood is a laminated wood material where alternating layers are perpendicular to each other. It is used in a liquefied natural gas (LNG) carrier for an insulation system because it has excellent durability, a light weight, and high stiffness. An LNG cargo containment system (LNG CCS) is subjected to loads from gravity, sloshing impact, hydrostatic pressure, and thermal expansion. Shear forces are applied to an LNG CCS locally by these loads. For these reasons, the materials in an LNG CCS must have good mechanical performance. This study evaluated the shear behavior of plywood. This evaluation was conducted from room temperature ($25^{\circ}C$) to cryogenic temperature ($-163^{\circ}C$), which is the actual operating environment of an LNG storage tank. Based on the plywood used in an LNG storage tank, a shear test was conducted on specimens with thicknesses of 9 mm and 12 mm. Analyses were performed on how the temperature and thickness of the plywood affected the shear strength. Regardless of the thickness, the strength increased as the temperature decreased. The 9 mm thick plywood had greater strength than the 12 mm thick specimen, and this tendency became clearer as the temperature decreased.

Comparative Study on the Characteristics of Heat Dissipation using Silicon Carbide (SiC) Powder Semiconductor Module (탄화규소(SiC) 반도체를 사용한 모듈에서의 방열 거동 해석 연구)

  • Jung, Cheong-Ha;Seo, Won;Kim, Gu-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.4
    • /
    • pp.89-93
    • /
    • 2018
  • Ceramic substrates applied to power modules of electric vehicles are required to have properties of high thermal conductivity, high electrical insulation, low thermal expansion coefficient and resistance to abrupt temperature change due to high power applied by driving power. Aluminum nitride and silicon nitride, which are applied to heat dissipation, are considered as materials meeting their needs. Therefore, in this paper, the properties of aluminum nitride and silicon nitride as radiator plate materials were compared through a commercial analysis program. As a result, when the process of applying heat of the same condition to aluminum nitride was implemented by simulation, the silicon nitride exhibited superior impact resistance and stress resistance due to less stress and warping. In terms of thermal conductivity, aluminum nitride has superior properties as a heat dissipation material, but silicon nitride is more dominant in terms of reliability.

Evaluation on Sensitivity and Approximate Modeling of Fire-Resistance Performance for A60 Class Deck Penetration Piece Using Heat-Transfer Analysis and Fire Test

  • Park, Woo Chang;Song, Chang Yong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.141-149
    • /
    • 2021
  • The A60 class deck penetration piece is a fire-resistance apparatus installed on the deck compartment to protect lives and to prevent flame diffusion in the case of a fire accident in a ship or offshore plant. In this study, the sensitivity of the fire-resistance performance and approximation characteristics for the A60 class penetration piece was evaluated by conducting a transient heat-transfer analysis and fire test. The transient heat-transfer analysis was conducted to evaluate the fire-resistance design of the A60 class deck penetration piece, and the analysis results were verified via the fire test. The penetration-piece length, diameter, material type, and insulation density were used as the design factors (DFs), and the output responses were the weight, temperature, cost, and productivity. The quantitative effects of each DF on the output responses were evaluated using the design-of-experiments method. Additionally, an optimum design case was identified to minimize the weight of the A60 class deck penetration piece while satisfying the allowable limits of the output responses. According to the design-of-experiments results, various approximate models, e.g., a Kriging model, the response surface method, and a radial basis function-based neural network (RBFN), were generated. The design-of-experiments results were verified by the approximation results. It was concluded that among the approximate models, the RBFN was able to explore the design space of the A60 class deck penetration piece with the highest accuracy.

Shield Ratio and Thrust Performance Analysis According to The S-Type Nozzle of The Centerline Shape (S-형 노즐 형상의 중심선 형태에 따른 차폐율과 추력 성능 해석)

  • Jin, Juneyub;Park, Youngseok;Kim, Jaewon;Lee, Changwook
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.42-55
    • /
    • 2021
  • In this study, the effect of nozzle performance according to the selection of the center line equation. Three of S-type nozzles and three of double S-type nozzles were designed using the curve equation and design parameters, and the nozzle shielding performance was evaluated using the shielding ratio definition. In order to analyze the internal flow of the nozzle, the characteristics of the velocity distribution and pressure distribution were studied, and the nozzle performance was evaluated through the total thrust ratio(f) and the nozzle insulation efficiency coefficient(η). On the other hand, the centerline with a sharply change in curvature at the entrance has a low nozzle performance and a high shielding rate. The double S-type nozzle is excellent nozzle performance and shielding rate by using a smooth centerline at the first curvature.

Study on the Content Characteristics of Waste Containing Brominated Flame Retardant (브롬화난연제 함유 폐기물의 함량 특성 연구)

  • Yeon, Jin-Mo;Kim, Woo-Il;Hwang, Dong-Gun;Cho, Na-Hyeon;Kim, Ki-Heon;Lee, Young-Ki
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.8
    • /
    • pp.692-700
    • /
    • 2018
  • In this study, the results of PBDEs and HBCDs of the products and waste that contain BFRs such as domestic electronic products, automobiles and textile products were compared with international management standards, and their excess rates were calculated. Deca-BDE was detected among the PBDEs in TV rear cover plastics, car seats, automotive interior plastics, and automobile shredding residues of products and waste containing BFRs. The comparison with Basel Convention management standards (1,000 mg/kg) for PBDE-containing wastes (4 types in total) shows that the excess rate of all samples was less than 1.5%. The estimated excess rate compared to the EU and Basel convention management standards (1,000 mg/kg) for PBDEs (4 species + deca-BDE) and TV rear cover plastics was 37.5% (30 of 80 samples exceeded the standards). The estimated excess rate compared to the Basel convention management standards (1,000 mg/kg) for HBCD, building materials products and waste was 15.7% (17 of 108 samples exceeded the standards). In the case of PBDEs, it is necessary to remove only the rear cover of CRT TV among the electric and electronic products and treat it in the flame retardant treatment facility to improve the recycling collection system. In the case of HBCD, it is necessary to appropriately dispose of the recycled materials, heat insulation materials, TV plastics, and styrofoam in marine fishery among construction materials and restrict the use as recycled raw materials.

Analysis of Switching Surge Over-voltage in AC/DC Hybrid Transmission Lines (AC/DC 병가선로의 개폐서지 과전압 해석)

  • Yoo, Seong-Soo;Shin, Koo-Yong;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.459-466
    • /
    • 2022
  • Switching surges are a common type of phenomenon that occur on any sort of power system network. These are more pronounced on long transmission lines and in high voltage converter stations. At AC/DC hybrid transmission lines, the insulation coordination of such lines is mainly dictated by the peak level of switching surges, the most dangerous of which include three phase line energization and AC/DC converter station. The power system structure consist of AC/DC hybrid transmission lines which is combination of AC 765kV and ±500kV HVDC 1 bipole system for contingency analysis. The power system under study and its components are simulated using EMTDC software package, the effects of the various AC/DC mixing power lines are reviewed. The developed models of EMTDC conversion lines based on combination of AC/DC system are simulated and the characteristics of switching surge over-voltage from its results are discussed.

A Study on the Effect of Evaporation of Liquid Hydrogen Tank Related to Horizontal Sinewave (액화수소 저장탱크의 수평요동이 증발 특성에 미치는 영향에 대한 연구)

  • SEUNG JUN OH;JUN YEONG KWON;JEONG HWAN YOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.155-161
    • /
    • 2023
  • Recently, a study on alternative and renewable energy is being conducted due to energy depletion and environmental problems. In particular, a hydrogen has the advantage of converting and storing the remaining energy into water-electrolyzed hydrogen through renewable energy generation. In general, due to reasons such as insulation problems, a study on high-pressure hydrogen storage tanks and related parts has recently been conducted. However, in the case of liquid hydrogen, the volume can be reduced by about 800 times or more compared to high-pressure hydrogen gas, so the study on this is needed as a technology that can increase energy density. In this study, the evaporation characteristics were analyzed under fixed heat flux conditions for liquid hydrogen storage tanks and the change in thermal stratification according to sloshing was analyzed. The heat flux condition was fixed at 250 W/m2 and the horizontal resonance frequency of the primary mode was applied to the storage tank. As a result, it was confirmed that the thermal stratification phenomenon decreased compared to the case where the slashing was not present due to forced convection when the slashing was present.

Identification of Void Diameters for Cast-Resin Transformers (몰드변압기의 보이드 결함 크기 판별)

  • Jeong, Gi-woo;Kim, Wook-sung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.570-573
    • /
    • 2022
  • This paper presents the identification of void diameters for a cast-resin transformer using an artificial neural network (ANN) model. A PD signal was measured by the Rogowski coil sensor which has the planar and thin structures fabricated on a printed circuit board (PCB), and the PD electrode system was fabricated to simulate a PD defect by a void. In addition, void samples with different diameters were fabricated by injecting air in a cylindrical aluminum frame using a syringe during the epoxy curing process. To identify the diameter of void defects, PD characteristics such as the discharge magnitude, pulse count, and phase angle were extracted and back propagation algorithm (BPA) was designed using virtual instrument (VI) based on the Labview program. From the experimental results, the BPA algorithm proposed in this paper has over 90% accurate rate to identify the diameter of void defects and is expected to use reference data of maintenance and replacement of insulation for cast-resin transformers in the on-site PD measurement.

  • PDF

Evaluation of cryogenic mechanical properties of aluminum alloy using small punch test

  • Hojun Cha;Seungmin Jeon;Donghyeon Yoon;Jisung Yoo;Seunggun Lee;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.70-74
    • /
    • 2023
  • The Small Punch Test (SPT) was developed to evaluate the softening and embrittlement of materials such as power plants and nuclear fusion reactors by taking samples in the field. Specimens used in the SPT are very thin and small disk-shaped compared to specimens for general tensile test, and thus have economic advantages in terms of miniaturization and repeatability of the test. The cryogenic SPT can also be miniaturized and has a significantly lower heat capacity than conventional universal test machines. This leads to reduced cooling and warm-up times. In this study, the cryogenic SPT was developed by modifying the existing room temperature SPT to be cooled by liquid nitrogen using a super bellows and a thermal insulation structure. Since the cryogenic SPT was first developed, basic experiments were conducted to verify the effectiveness of it. For the validation, aluminum alloy 6061- T6 specimens were tested for mechanical properties at room and cryogenic temperature. The results of the corrected tensile properties from the SPT experiment results were compared with known room temperature and cryogenic properties. Based on the correction results, the effectiveness of the cryogenic SPT test was confirmed, and the surface fracture characteristics of the material were analyzed using a 3d image scanner. In the future, we plan to conduct property evaluation according to the development of various alloy materials.

A Study on the Optimal Generation Conditions of Micro-Droplet in Electrostatic Spray Indirect Charging Method (정전 분무 간접 하전 방식에서 미세액적 최적 발생 조건에 관한 연구)

  • Jihee Lee;Sunghwan Kim;Haiyoung Jung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.1
    • /
    • pp.79-87
    • /
    • 2024
  • This paper is a study on the optimal microdroplet generation conditions in indirect charging electrostatic spraying. Unlike the direct charging method, which applies power to the nozzle, the indirect charging method applies power to the discharge electrode between the nozzle and the collection electrode. Therefore, an electrically simplified system can be obtained by minimizing the insulation part a stable spray pattern can be obtained with a wide spray angle, and a stable spray pattern can be obtained with a wide spray angle. To conduct the study, an indirect charging type electrostatic spray visualization system was constructed and the static characteristics of the microdroplets were analyzed through image processing of the spray shape of the microdroplets. The total number of microdroplets and the number of microdroplets per power consumption are confirmed according to the changes in the distance between the discharge electrode and the collection electrode, the flow rate, and the applied voltage, which affect the generation of microdroplets, and using this, the optimal generation conditions are derived and the corresponding microdroplet size distribution was analyzed. As a result of the experiment, it was confirmed that the optimal generation condition was at a flow rate of 15 to 20 mL/min and a voltage of -22.5 to -25 kV in terms of the number of microdroplets, and at a flow rate of 15 to 20 mL/min and a voltage of -20 kV in terms of energy consumption efficiency.