• Title/Summary/Keyword: Insulation Test

Search Result 923, Processing Time 0.025 seconds

The Experimental Study of Insulation Structure for BOG Re-liquefaction Drum (증발가스 재액화 드럼의 단열구조에 관한 실험적 연구)

  • Kim, Ik-Soo;Jung, Young-Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.7-13
    • /
    • 2021
  • The re-liquefaction drum is a product that installed spray nozzles at the top to directly spray overcooled LNG into evaporative gas and installed demistors to facilitate gas separation, which was developed to increase the re-liquidity efficiency of small scale re-liquefaction facilities. In the hydrostatic test of the drum, no leakage occurred even at a pressure of 1.5 times the design pressure, but during the BOR(Boil Off Rate) test, the bolt loosening occurred due to contraction and expansion by temperature change. For the continued use of the product, insulation construction on flange connections was developed to enable detachment and attachment, and the comparison of heat load with existing insulation confirmed that it was very small compared to the inlet flow rate in the drum.

Development of the Passive Outside Insulation Composite Panel for Energy Self-Sufficiency of Building in the Region (지역 건축물의 에너지 자립을 위한 패시브 외단열 복합패널 개발 연구)

  • Moon, Sun-Wook
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.20 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • The study aims to address the energy crisis and realize self-sufficiency of building as part of local energy independence, breaking away from a single concentrated energy supply system. It is intended to develop modules of the outside insulation composite panels that conform to passive certification criteria and for site-assembly systematization. The method of study first identifies trends and passive house in literature and advanced research. Second, the target performance for development is set, and the structural material is selected and designed to simulate performance. Third, a test specimen of the passive outside insulation curtain wall module designed is manufactured and constructed to test its heat transmission coefficient, condensation performance and airtightness. Finally, analyze performance test results, and explore and propose ways to improve the estimation and improvement of incomplete causes to achieve the goal. The final test results achieved the target performance of condensation and airtightness, and the heat transmission coefficient was $0.16W/(m^2{\cdot}K)$, which is $0.01W/(m^2{\cdot})K$ below the performance target. As for the lack of performance, we saw a need for a complementary design to account for simulation errors. It also provided an opportunity to recognize that insulated walls with performance can impact performance at small break. Thus, to be commercialized into a product with the need for improvement in the design of the joint parts, a management system is needed to increase the precision in the fabrication process.

Nondestructive evaluation of wall thinning covered with insulation using pulsed eddy current (펄스와전류를 이용한 보온재 비해체식 배관감육 평가기술)

  • Park, Duck-Gun;Babu, M.K.;Lee, Duk-Hyun
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.90-95
    • /
    • 2014
  • Local wall thinning is a point of concern in almost all steel structures such as pipe lines covered with a thermal insulator made up of materials with low thermal conductivity(fiberglass or mineral wool); hence, Non Destructive Technique(NDT) methods that are capable of detecting the wall thinning and defects without removing the insulation are necessary. In this study we developed a Pulsed Eddy Current(PEC) system to detect the wall thinning of Ferro magnetic steel pipes covered with fiber glass thermal insulator and shielded with Aluminum plate. The developed system is capable of detecting the wall thickness change through an insulation of thickness 10cm and 0.4mm aluminum shielding. In order to confirm the thickness change due to wall thinning, two different sensors, a hall sensor and coil sensor were used as a detecting element. In both cases, the results show a very good change corresponding to the thickness change of the test specimen. During these experiments a carbon steel tube of diameter 210mm and a length of 620mm, which is covered with insulator of 95mm thickness was used. To simulate the wall thinning, the thickness of the tube is changed for a specified length such as 2.5mm, 5mm and 8 mm from the inner surface of the tube. A 0.4mm thick Aluminum plate was covered on the Test specimen to simulate the shielding of the insulated pipelines. For both hall sensor and coil detection methods Fast Fourier transform(FFT) was calculated using window approach and the results for the test specimen without Aluminum shielding were summarized which shows a clear identification of thickness change in the test specimen by comparing the magnitude spectra. The PEC system can detect the wall thinning under the 95 mm thickness insulation and 0.4 mm Al shielding, and the output signal showed linear relation with tube wall thickness.

Development of Optimum Shape Forming Technology of Angle Ring and Cap for 154kV transformer Insulation (154kV급 변압기절연물 앵글링과 캡의 최적성형 기술 개발)

  • Suh, Wang-Byuck;Kim, Jong-Won;Jang, Sung-Ju;Ryu, Jung-Soo;Bae, Dong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.30-30
    • /
    • 2010
  • The Angle Ring and Cap which is called pressboard are settled at primary and secondary coil winding of 154 kV transformer that can reduce effectively distance of insulation. As it has not manufactured pressboard of Angle Ring and Cap for high voltage grade, insulation components industry especially high voltage transformer has not participate in a competition with worldwide yet. That's why is difficult to make an specialized shape of insulation components of high voltage grade. At first, it is very important to make an utility of deformation manufacturing for high voltage transformer insulation components by itself. Therefore it has finally completed to make an deformation manufacturing utility using an special analysis tools. In this paper, developed insulation components was investigates in tensile strength is introduced.

  • PDF

CRITICAL HEAT FLUX FOR DOWNWARD-FACING BOILING ON A COATED HEMISPHERICAL VESSEL SURROUNDED BY AN INSULATION STRUCTURE

  • Yang, J.;Cheung, F.B.;Rempe, J.L.;Suh, K.Y.;Kim, S.B.
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.139-146
    • /
    • 2006
  • An experimental study was performed to evaluate the effects of surface coating and an enhanced insulation structure on the downward facing boiling process and the critical heat flux on the outer surface of a hemispherical vessel. Steady-state boiling tests were conducted in the Subscale Boundary Layer Boiling (SBLB) facility using an enhanced vessel/insulation design for the cases with and without vessel coatings. Based on the boiling data, CHF correlations were obtained for both plain and coated vessels. It was found that the nucleate boiling rates and the local CHF limits for the case with micro-porous layer coating were consistently higher than those values for a plain vessel at the same angular location. The enhancement in the local CHF limits and nucleate boiling rates was mainly due to the micro-porous layer coating that increased the local liquid supply rate toward the vaporization sites on the vessel surface. For the case with thermal insulation, the local CHF limit tended to increase from the bottom center at first, then decrease toward the minimum gap location, and finally increase toward the equator. This non-monotonic behavior, which differed significantly from the case without thermal insulation, was evidently due to the local variation of the two-phase motions in the annular channel between the test vessel and the insulation structure.

The Evaluation of Thermal Aging Characteristics in Insulating Paper for the Use of the Pole Transformers (가속열화 방법에 의한 주상변압기 절연물의 열열화 특성 평가)

  • Lee, Byung-Sung;Song, Il-Keun;Lee, Jae-Bong;Park, Dong-Bae;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.100-103
    • /
    • 2003
  • The primary insulation system used in an oil-filled transformer is kraft paper, wood, porcelain and oil. Modern transformers use paper that is chemically treated to improve its tensile strength properties and resistance to aging caused by immersion in oil. But these insulation papers are mainly aged to thermal stress. Over the course of the insulation paper and oil's life it is exposed to high temperatures, oxygen and water. Its interaction with the steel of the tank and core plus the copper and aluminium of the windings will eventually cause the chemical properties of the oil to decay. High temperature have an effect on mechanical strength of cellulous paper using the layer insulation. We made two aging cell in which thermal aging tests of insulation papers and mineral oil are conducted. It is measured dielectric strength, number of acid, moisture, etc. of insulation paper and oil aged in the aging cells.

  • PDF

Insulation Characteristics of Dry-air Insulated Switchgear for 72.5 kV Wind Power Generation (72.5 kV 풍력 발전용 Dry-air Switchgear의 절연 특성)

  • Chan-Hee Yang;Jin-Seok Oh;Hee-Tae Park;Young-il Kim
    • Journal of Wind Energy
    • /
    • v.15 no.2
    • /
    • pp.5-9
    • /
    • 2024
  • This paper describes the insulation breakdown characteristics of 72.5 kV dry-air insulated switchgear under development for installation in a wind power generator when a lightning impulse voltage is applied. For this study, the weak point of insulation due to the electric field concentration of the switchgear's internal shape was identified by finite element method (FEM) analysis, and the shape was actually simulated to measure and analyze the polarity of the lightning impulse voltage and the insulation breakdown characteristics according to the gas pressure at dry-air pressures of 0.1 Mpa to 0.45 Mpa. This study derives the maximum electric field with a 50 % discharge probability for each switchgear internal insulation vulnerable point based on the actual test and electrical simulation, which will be useful as reference data for supplementing and changing insulation design in the future.

A Study on the Water Absorption Diagnosis Method through Capacitance Measurement for Generator Stator Windings (발전기 고정자 권선의 정전용량 측정을 통한 흡습 진단 방법에 관한 연구)

  • Kim, Hee-Soo;Bae, Yong-Chae;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.11 s.188
    • /
    • pp.50-57
    • /
    • 2006
  • The water leak in water-cooled generator stator windings can generate the serious accidents such as insulation breakdown and it brings a generator to the unexpected sudden outage. Accordingly, it is important to diagnose the water absorption of them for the effective operation of power plant. Especially, the capacitance value which is measured for diagnosis is very small so the special diagnosis methods like stochastic theory are needed. KEPRI developed the water absorption test equipment and diagnosis technology for them. The developed diagnosis technology is applied to the real system and the results of water absorption test for stator windings are agreed to them of water leak test.

Efficiency appraisal of 22.9kV tree retardant power cable (22.9kV 트리억제형 전력케이블의 성능평가)

  • Kim, We-Young;Yun, Dae-Hyuk;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.179-182
    • /
    • 2002
  • XLPE compound have used for insulation of 22.9(kV) power cable. But tree retardant power cable has developed and is going to br used commonly. TR XLPE compound retard production and growth of water tree. In this paper, tensile strength, elongation at break, degree of crosslinking, lightning impulse test, AC breakdown test, cyclic aging for 14days and accelerated water treeing test of TR XLPE insulated power cable were examined according to the KEPCO buying spec. & AEIC CS 5-94 standards. before and after As the result, tensile strength, elongation at break and degree of crosslinking test results of TR XLPE insulation were higher than requirement values. After accelerated water treeing test for 120 days, 240 days and 360 days, AC breakdown voltages were not decreased for accelerated water treeing aging duration

  • PDF

Electrical Characteristics Analysis According to Electrode Shape and Distance Between Electrodes (전극 형태와 전극 간 거리에 따른 전기적 특성 분석)

  • Tae-Hee Kim;Soon-Hyung Lee;Mi-Yong Hwang;Yong-Sung Choi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.408-412
    • /
    • 2023
  • In this paper, in order to analyze high electrical insulation and cooling performance using mineral oil, the liquid insulating oil was changed in electrode shape and distance between electrodes to compare and analyze electrical characteristics according to equal electric field, quasi-equivalent electric field, and unequal electric field. As a result, the breakdown voltages were 36,875 V and 36,875 V in the form of sphere-sphere and plate-plate electrodes with equal electric fields. The breakdown voltage was 31,475 V in the sphere-plate electrode type, which is a quasi-equilibrium field, and the breakdown voltage was 28,592 V, 27,050 V, and 22,750 V in the needle-needle, sphere-needle, and needle-plate electrode types, which are unequal fields. Through this, it is possible to know the difference in breakdown voltage according to the type of electric field. The more equal the field, the higher the breakdown voltage, and the more unequal field, the lower the breakdown voltage. The difference in insulation breakdown voltage could be seen depending on the type of electric field, the insulation breakdown voltage was higher for the more equal electric field, and the insulation breakdown voltage was lower for the more unequal electric field. Also, it was confirmed that the closer the distance between the electrodes, the higher the insulation breakdown voltage, the higher the insulation breakdown current, and the insulation breakdown voltage and the insulation breakdown current were proportional.