• Title/Summary/Keyword: Insulation Breakdown Strength

Search Result 178, Processing Time 0.025 seconds

Dielectric Breakdown Characteristics of PPLP and GFRP for HTS DC Cable System (고온초전도 DC 케이블 시스템용 PPLP 및 GFRP의 절연 특성)

  • Kim, S.H.;Choi, J.H.;Kim, W.J.;Jang, H.M.;Lee, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.13 no.3
    • /
    • pp.5-9
    • /
    • 2011
  • DC high-temperature superconducting(HTS) cable system has attracted a great deal of interest from the view point of low loss, dense structure and large capacity. A HTS cable system is made of cable and termination. The insulating materials and insulation technology must be solved for the long life, reliability and compact of cable system. In this paper, we will report on the dielectric breakdown characteristics of insulating materials for HTS cable and termination. The AC, DC and lightning impulse breakdown strength of laminated polypropylene paper(PPLP) and glass fiber reinforced plastic(GFRP) have been measured under nitrogen pressures in the range of 0.l-0.4MPa. PPLP and GFRP are found to have a significantly higher DC breakdown strength. Also, DC surface flashover voltage of negative polarity is slightly higher than that of positive polarity in GFRP.

A Study on the AC Interfacial Breakdown Properities of the Interface between Epoxy/EPDM with the variation of spreaded oil (도포된 오일의 변화에 따른 Epoxy/EPDM 계면의 교류 절연 파괴 특성에 관한 연구)

  • Bae, Duck-Kweon;Lee, Su-Kil;Jung, Il-Hyung;Lee, Jun-Eung
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.897-899
    • /
    • 1999
  • In this paper, the interfacial dielectric breakdown phenomenon of interface between Epoxy/EPDM (ethylene propylene diene terpolymer) was discussed, which affects stability of insulation system of power delivery devices. Specimen structure was designed by using MAGSOFT's FLUX2D based on the finite elements method. Design concepts is to reduce the effect of charge transport from electrode in the process of breakdown and to have the tangential electrical potential with the Epoxy/EPDM interface. AC interfacial breakdown phenomenon of was investigated by variation of interfacial conditions oil and temperature which are supposed to have influence on the interfacial breakdown strength. Interfacial breakdown strength was improved by spreading oil over interfacial surface. The decreasing ratio of the AC interfacial breakdown strength in non-oiled specimens was increased by the temperature rising and its of oiled specimens was not affected by temperature.

  • PDF

HVDC용 나노복합 절연재료의 DC절연파괴특성 연구

  • Jeong, Ui-Hwan;Yun, Jae-Hun;Lee, Seung-Su;Im, Gi-Jo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.155-155
    • /
    • 2009
  • This paper introduces the findings of a detailed study on breakdown voltage strength under DC voltage and the development of HVDC cable. Recently, Nano-fillers are attracting attentions of many researchers and engineers, since they seem to bring higher potentials for advancement of electrical insulating properties as nano-composites. Additives and fillers are often adopted to polymeric materials for improving insulating and machanical properties. We have improved the polymer composition and developed a new insulation material for HVDC cable. Each specimen blended at LDPE1 to antioxidant, LDPE2 to antioxidant, pure XLPE was manufactured respectively. The insulation performances of the proposed insulator were compared with specimens blended at nano powders. DC breakdown strength of LDPE1 specimen at 90[$^{\circ}C$] was higher than other specimens. The experimental results show that polar groups intorduced in moleculars chains of blended specimen plays an important role in enhancement of thermal conductivity.

  • PDF

The Improvement of Radiation Characteristics of Low Density Polyethylene by Addition of Treeing Inhibitors (트리 억제제 첨가에 의한 저밀도 폴리에틸렌의 내방사선성 향상)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung;Lim, Kee-Joe
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.455-461
    • /
    • 2000
  • The inhibiting effects of electrical treeing and insulation properties of LDPE contained with treeing inhibitors was studied under radiation environment. Barbituric acid and its derivatives were selected as treeing inhibitors. The inception voltage and growth of tree, AC breakdown strength, volume resistivity, high frequency capacitance, and dissipation factor were observed as a function of dose(up to 1000 kGy). And also, measurements of thermo-luminescence(TL), and gel content were carried out. Crosslinked low density polyethylene(XLPE) contained with treeing inhibitors shows better insulation characteristics such as electrical tree propagation, AC breakdown strength, and volume resistivity than those of pure LDPE. The most effective treeing inhibitor was found on the barbituric acid contained XLPE.

  • PDF

Efficiency appraisal of 22.9kV tree retardant power cable (22.9kV 트리억제형 전력케이블의 성능평가)

  • Kim, We-Young;Yun, Dae-Hyuk;Park, Tae-Gone
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.179-182
    • /
    • 2002
  • XLPE compound have used for insulation of 22.9(kV) power cable. But tree retardant power cable has developed and is going to br used commonly. TR XLPE compound retard production and growth of water tree. In this paper, tensile strength, elongation at break, degree of crosslinking, lightning impulse test, AC breakdown test, cyclic aging for 14days and accelerated water treeing test of TR XLPE insulated power cable were examined according to the KEPCO buying spec. & AEIC CS 5-94 standards. before and after As the result, tensile strength, elongation at break and degree of crosslinking test results of TR XLPE insulation were higher than requirement values. After accelerated water treeing test for 120 days, 240 days and 360 days, AC breakdown voltages were not decreased for accelerated water treeing aging duration

  • PDF

Insulation rehabilitation of water tree aged cables by silicone treatment (실리콘 처리에 의한 수트리 열화케이블의 절연회복)

  • 김주용;송일근;한재홍;이동영;문재덕
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.14-21
    • /
    • 2000
  • This paper presents the results of performance evaluation of silicone treatment technique which was developed for the insulation rehabilitation of water tree aged XLPE power cables. We treated the water tree aged 325 [$\textrm{mm}^2$] CN/CV cables with silicone, and then analyzed the degree of insulation rehabilitation as a function of time. AC breakdown test was conducted to evaluate insulation rehabilitation. The diagnosis test using relaxation current measurement and the characteristic analysis of insulation were also performed to estimate silicone treated cable. AC breakdown strength of silicone treated cable for one year was increased, resulting from the chemical reaction between silicone fluid and water. This experiment showed that the silicone treatment technique was effective for insulation rehabilitation of the water tree aged cables.

  • PDF

Breakdown Characteristics According to the Type & Gap of Rod-electrodes Using Imitation Air (제조공기를 이용한 봉전극의 형상 및 갭길이에 따른 절연파괴특성)

  • Lee, Jung-Keun;Lee, Su-Hyoung;Ahn, In-Seok;Jang, Jun-Oh
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.19-23
    • /
    • 2014
  • In this paper the experiments of breakdown characteristics of rod-electrodes by pressure and gap change of imitation-air were described. The results are fundamental data for electric insulation design of distribution power facilities which will be studied and developed in the future. And we could make an environment friendly gas insulation material with mataining dielectric strength by imitation air which generates a lower lever of the global warming effect.

Breakdown Characteristics of Rod-Electrodes using Imitation Air (제조공기를 이용한 Rod전극의 절연파괴특성)

  • Song, Jae-Woo;Jang, Se-Woo;Ahn, Ihn-Seok;Jang, Jun-Oh
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.16-20
    • /
    • 2013
  • In this paper the experiments of breakdown characteristics by pressure and gap change of imitation air were described. The results are fundamental data for electric insulation design of distribution power facilities which will be studied and developed in the future. And we could make an environment friendly gas insulation material with mataining dielectric strength by Imitation Air which generates a lower lever of the global warming effect.

Characterization of Water Vapor Transmission & Dielectric Breakdown in Insulation Materials for Jacket Compound (자켓 컴팍운드용 절연재의 수증기투과 및 절연파괴 특성)

  • 송재주;한재홍;송일근;한용희;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.52-56
    • /
    • 2001
  • Experiments of 2 type on insulating compounds accomplished to change PVC using in URD(Underground) power cable jacketing. one was DB(Dielectric Breakdown) test on the pure base resins and the others were WVT(Water Vapor Transmission) test on the compounds which contained C/B(Carbon Black), anti-oxidant to base resin. a kind of specimens made by pressing to resin of pellet or lump form was HDPE(High Density Polyethylene), MDPE(Medium Density Polyehylene), LDPE(Low Density Polyethylene), LLDPE(Linear Low Density Polyethylene), PVC(Polyvinyl Chloride). As a results of AC DB and WVT test, we saw that strength of Insulation was HDPE> LLDPE = MDP E> LDPE and WVT ratio was HDPE

  • PDF

A Study on the Insulation Basis of Hts Transformer (초전도 변압기의 절연기반 연구)

  • Cheon, Hyeon-Gweon;Kwag, Dong-Soon;Yun, Mun-Soo;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.639-642
    • /
    • 2005
  • HTS Transformer developing is developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects. Therefore, we prepared the model, that is Z continuous winding from Kapton insulated Cu tape for a small simulated the HTS transformer. For the development of electrical insulation design of a HTS transformer with Z continuous winding, we have been discussed insulation composition and investigated breakdown characteristics such as breakdown of liquid $N_2(LN_2)$, polymer and surface flashover on FRP and breakdown-surface combination in $LN_2$. Also we have been designed and manufactured a bobbin that has spiral slot for the Z continuous winding. The Z continuous winding mini-model from Kapton film insulated Cu tape for simulated 22.9kV class HTS transformer has been constructed using 0.1 % breakdown strength obtained by Weibull distribution. The widing model was measured their insulation characteristics such as ac (50kV, 1min) and impulse (154kV, $1.2\times50{\mu}s$ full wave, 3 times) withstand test and its excellent performance was confirmed.

  • PDF