• Title/Summary/Keyword: Insulating Structure

Search Result 295, Processing Time 0.024 seconds

Semi-insulation Behavior of GaN Layer Grown on AlN Nucleation Layer

  • Lee, Min-Su;Kim, Hyo-Jeong;Lee, Hyeon-Hwi
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.132-132
    • /
    • 2011
  • The sheet resistance (Rs) of undoped GaN films on AlN/c-plane sapphire substrate was investigated in which the AlN films were grown by R. F. magetron sputtering method. The Rs was strongly dependent on the AlN layer thickness and semi-insulating behavior was observed. To clarify the effect of crystalline property on Rs, the crystal structure of the GaN films has been studied using x-ray scattering and transmission electron microscopy. A compressive strain was introduced by the presence of AlN nucleation layer (NL) and was gradually relaxed as increasing AlN NL thickness. This relaxation produced more threading dislocations (TD) of edge-type. Moreover, the surface morphology of the GaN film was changed at thicker AlN layer condition, which was originated by the crossover from planar to island grains of AlN. Thus, rough surface might produce more dislocations. The edge and mixed dislocations propagating from the interface between the GaN film and the AlN buffer layer affected the electric resistance of GaN film.

  • PDF

Electrical characteristics on the interfacial heat treatment time between XLPE/EPDM laminates (XLPE/EPDM 계면의 열처리 시간에 따른 전기적 특성)

  • Choi, W.C.;Lee, C.J.;Kim, S.K.;Jo, D.S.;Park, K.S.;Kim, J.S.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1503-1506
    • /
    • 1997
  • The main fault in this interface is that power cable insulating materials are mainly composed of a double layered structure, XLPE/EPDM laminates in cable joint. In this paper, we instituted the interface of normal and degassed XLPE/EPDM and then investigated the breakdown and conduction characteristics as a function of heat treatment time. The results showed that conduction and breakdown strength was influenced by volatile crosslinking by-products which remained inside the insulating material during the production of XLPE and EPDM, especially during heat treatment process. And micro voids and surface roughness also influenced the conduction current and breakdown strength.

  • PDF

Application of Ventilated Cavity for Enhancing Insulation and Preventing Condensation of Curtain-wall System (커튼월의 단열 향상 및 결로 방지를 위한 통기구조 적용방안 연구)

  • Lee, Sunwoo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.21-28
    • /
    • 2017
  • Curtain-wall systems have been widely applied to buildings because of their lightweight and constructability characteristics. However, as curtain-wall systems include many building materials, vapor barriers can become damaged and condensation can occur. Due to the material properties of stone curtain-walls, the external appearance and structure of a building could be damaged and the insulating performance of the curtain-wall could be worse. Natural ventilation using an air cavity in a curtain-wall is expected to be effective for the prevention of condensation in inner walls and for the reduction of building cooling energy use in the summer. The purpose of this experimental study is to analyze the influence of a ventilated cavity on the insulating performance of a curtain-wall and the ventilated cavity depth and ratio of top opening needed to prevent condensation in a curtain-wall.

Characteristics of Semiconductor-Atomic Superlattice for SOI Applications (SOI 응용을 위한 반도체-원자 초격자 구조의 특성)

  • 서용진
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.6
    • /
    • pp.312-315
    • /
    • 2004
  • The monolayer of oxygen atoms sandwiched between the adjacent nanocrystalline silicon layers was formed by ultra high vacuum-chemical vapor deposition (UHV-CVD). This multilayer Si-O structure forms a new type of superlattice, semiconductor-atomic superlattice (SAS). According to the experimental results, high-resolution cross-sectional transmission electron microscopy (HRTEM) shows epitaxial system. Also, the current-voltage (Ⅰ-Ⅴ) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the system may form an epitaxially grown insulating layer as possible replacement of silicon-on-insulator (SOI), a scheme investigated as future generation of high efficient and high density CMOS on SOI.

Electrical Characteristics of the Interfacial Layer between XLPE/EPDM Laminates on the Heat Treatment (열처리 조건에 따른 XLPE / EPDM 계면의 전기적 특성)

  • 최원창;이제정;김석기;조대식;한상옥;박강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.225-228
    • /
    • 1997
  • The main fault in this interface is that power cable insulating materials are mainly composed of a double layered structure, XLPE/FPDM laminates in cable joint. In this parer, we instituted the interface of XLPE/EPDM laminates and then investigated the breakdown and conduction characteristics as a function of heat treatment time. The results showed that conduction current was influenced by volatile crosslinking by-products which remained inside the insulating material during the production of XLPE and EPDM, especially during heat treatment process. And conduction current of XLPE/Oil 12500cSt/EPDM was more stable than XLPE/Grease/EPDM from the long heat treatment time. AC breakdown strength of silicone oil itself from the heat treatment was changed during the 4∼12 hour heat treatment time.

  • PDF

A Study on Electrical Properties and Structure Analysis of Epoxy-Ceramic Composite Materials (에폭시-세라믹 복합재료의 전기적 특성 및 구조분석)

  • 정지원;홍경진;김태성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.9-12
    • /
    • 1994
  • Epoxy-Ceramic Composite have good insulating, therma1 and mechanical properties, so it is studied actively on this material. In this thesis, we made a composite material b)\ulcorner filling Epoxy Resin with ceramics treated with Sillane Coupling Agent and studied dielectric and insulating characteristics according to treatment density of Sillane Coupling Agent and weight percent of filler. As a result, loss tangent increase and electrical breakdown voltage decrease according to increasing treatment density of sillane coupling agent because Interface matching between matrix and filler is not good. The best treatment density of sillane coupling agent is 0.5% water solution, in this density the best interface matching is achieved so good dielectric and insulation characteristics are shown. Dielectric and insulation characteristics according to weight percent of filler are best at 25wt.

  • PDF

Interlaminar Fracture Toughness of GFRP Composites for Insulating Structure of Magnet System (전자석 시스템의 절연 구조물용 유리섬유강화 복합재료의 층간 파괴인성)

  • Song, Jun Hee;Kim, Hak Kun;Kim, Yonjig
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.754-759
    • /
    • 2011
  • In this study, the interlaminar fracture behaviors of laminated GFRP composites were investigated, and the results could be used for damage tolerance design based on fracture mechanics. Three types of laminated GFRP composites that can be used as high voltage insulating materials in magnet systems were fabricated in order to study the interlaminar fracture behavior according to the molding process. The values of interlaminar fracture toughness for the VPI, prepreg, and HPL laminate were $1.9MPa{\cdot}^{1/2}$, $1.7MPa{\cdot}^{1/2}$, and $2.2MPa{\cdot}^{1/2}$, respectively. HPL laminate showed the best fracture resistance. The failure modes of HPL and VPI were similar to that of an adhesive joint, and prepreg laminates showed partial cohesive failure mode due to internal voids.

A study on the improvement of thermostability and dielectric breakdown strength for packaging and impregnating epoxy composite materials for electrical machines and apparatus (전기 기기용 봉지 및 함침 에폭시 복합 재료의 내열성 및 절연파괴 특성 개선에 관한 연구)

  • 김명호;김재환
    • Electrical & Electronic Materials
    • /
    • v.7 no.6
    • /
    • pp.527-533
    • /
    • 1994
  • In this study, it was studied on dielectric breakdown strength and thennostability properties due to the structure variation of matrix resin and treatment of coupling agent of epoxy insulating materials. The interpenetrating network structure was formed by simultaneous heating curing the epoxy resin with single network structure and the methacrylic acid resin. Also inner structure was observed and the glass transition temperature was measured on these three type specimens. Dielectric breakdown properties were investigated by applying DC, AC and impulse voltage. As a result, the glass transition temperature and the dielectric breakdown strength of specimen with interpenetrating network structure was more higher than another two type specimens.

  • PDF

A Study on the Improvement Floor Impact Sound Insulation by Ceiling Structure in Apartment Houses (천장구조를 이용한 공동주택 바닥충격음 차단성능 개선에 관한 연구)

  • Ki, No-Gab;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1038-1042
    • /
    • 2007
  • The factors influencing the floor impact sound insulation include floor finishing materials, shock absorbing floors (slabs included), and ceiling structures. The ceilings of the apartment houses, currently built in Korea, are set up with lower parts of slabs and paper finishing, or with double floors for protecting against floor impact sounds in order to improve the sound insulating performance. The most common the method of ceiling structure construction consists of 'wood boarded frames + Gypsum boards + ceiling papers', which is called the wood boarded frame method. This study aimed to measures and evaluates floor impact sound insulation by which the ceiling space are widened according to suppression system is added in apartment house ceiling structure.

  • PDF

Generation of Open circuit voltage in Insulating Ultra Thin Films in Metal/LB film/Metal Structure (금속/LB film/금속 구조의 절연 초박막에서의 전압 발생)

  • Kwon, Young-Soo;Kang, Dou-Yol
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.172-174
    • /
    • 1988
  • Studies and measurements of open circuit voltage in a metal/insulator/metal structure where metal are electrodes, when the insulator molecules have dipole moments all oriented parallel to each other have been reported here. The measured voltage has been shown to be directed related to the dipole moment of the molecules in the films. The insulator ultra thin films was deposited on them by the Langmuir-Blodgett technique to obtain the structure referred to as z type and Hetero structure of LB films.

  • PDF