• 제목/요약/키워드: Insulating Paper

검색결과 491건 처리시간 0.025초

공융 갈륨-인듐 액체금속 전극 기반 전기이중층 커패시터 (An Electric Double-Layer Capacitor Based on Eutectic Gallium-Indium Liquid Metal Electrodes)

  • 김지혜;구형준
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.627-634
    • /
    • 2018
  • Gallium-based liquid metal, e.g., eutectic gallium-indium (EGaIn), is highly attractive as an electrode material for flexible and stretchable devices. On the liquid metal, oxide layer is spontaneously formed, which has a wide band-gap, and therefore is electrically insulating. In this paper, we fabricate a capacitor based on eutectic gallium-indium (EGaIn) liquid metal and investigate its cyclic voltammetry (CV) behavior. The EGaIn capacitor is composed of two EGaIn electrodes and electrolyte. CV curves reveal that the EGaIn capacitor shows the behavior of electric double-layer capacitors (EDLC), where the oxide layers on the EGaIn electrodes serves as the dielectric layer of EDLC. The oxide thicker than the spontaneously-formed native oxide decreases the capacitance of the EGaIn capacitor, due to increased voltage loss across the oxide layer. The EGaIn capacitor without oxide layer exhibits unstable CV curves during the repeated cycles, where self-repair characteristic of the oxide was observed. Finally, the electrolyte concentration is optimized by comparing the CV curves at various electrolyte concentrations.

Electrical insulating design of 600kJ conduction cooled HTS SMES

  • Choi, Jae-Hyeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Min, Chi-Hyun;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제9권2호
    • /
    • pp.27-30
    • /
    • 2007
  • The electrical insulation design and withstanding test of mini-model coils for 600 kJ class conduction cooled high temperature superconducting magnetic energy storage (HTS SMES) have been studied in this paper. The high voltage is generated to both ends of magnet of HTS SMES by quench or energy discharge. Therefore, the insulation design of the high voltage needs for commercialization, stability, reliability and so on. In this study, we analyzed the insulation composition of a HTS SMES, and investigated about the insulation characteristics of the materials such as Kapton, AIN and vacuum in cryogenic temperature. Base on these results, the insulation design for 600 kJ conduction cooled HTS SMES was performed. The mini-model was manufactured by the insulation design, and the insulation test was carried out using the mini-model.

Structural, physical and electrical properties of SiO2 thin films formed by atmospheric-pressure plasma technology

  • Kyoung-Bo Kim;Moojin Kim
    • Journal of Ceramic Processing Research
    • /
    • 제23권4호
    • /
    • pp.535-540
    • /
    • 2022
  • Atmospheric pressure plasma (APP) systems operate at atmospheric pressure and low temperatures, eliminating the need forvacuum systems such as vacuum chambers and pumps. In this paper, we studied that silicon dioxide thin films were formedat room temperature (25 oC) and 400 oC by APP processes on silicon wafers. A mixture of hexamethyldisilazane, oxygen,helium, and argon was supplied to the plasma apparatus to form the SiO2 layer. It was observed that a heat insulating layerhaving a thickness of about 22 nm at 25 oC and about 75 nm at 400 oC was formed. Although the surface was clean in samplestreated at 400 oC, small grains were observed in samples processed at room temperature. However, no void or defect in allsamples is observed inside the thin film from the surface. The physical property of the SiO2 thin film carried out by measuringrefractive index and density. The experimental refractive index of silicon dioxide grown by applying heat can be fitted to theSellmeier equation. Also, the film density of the sample at 400 oC using a XRR was observed to be 2.25 g/cm3, similar to thatof the glass, but that of the sample treated at room temp. was very low at 1.68 g/cm3. We also investigated the voltagedependentcurrent change in the oxide material. The SiO2 layer coated at room temperature showed a breakdown electricalfield of 2.5 MV/cm, while oxides deposited at 400 oC showed a characteristic of 9.9 MV/cm.

솔벤트 도핑과 후처리 공정에 따른 전도성 고분자 PEDOT : PSS의 특성 변화 (Effect of Solvent Doping and Post-Treatment on the Characteristics of PEDOT : PSS Conducting Polymer)

  • 김진희;서윤경;한주원;오지윤;김용현
    • 공업화학
    • /
    • 제26권3호
    • /
    • pp.275-279
    • /
    • 2015
  • 전도성 고분자인 poly(3,4-ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS)는 우수한 전기 전도도와 광투과도, 유연성을 가지고 있기 때문에 유기태양전지와 유기발광소자의 투명전극으로서 많은 각광을 받고 있다. PEDOT : PSS의 전기 전도도는 솔벤트를 도핑함에 따라 큰 폭으로 증가한다는 사실은 잘 알려져 있다. 본 연구에서는 다양한 솔벤트의 도핑과 솔벤트 후처리 공정에 따른 PEDOT : PSS 박막의 전기 전도도와 구조적 특성 변화를 연구하였다. 솔벤트 도핑으로 PEDOT : PSS의 전도도는 884 S/cm까지 증가하였고, 후처리 공정을 통해서 1131 S/cm의 전도도 값을 얻을 수 있었다. 이러한 전도도의 증가는 PSS 물질이 빠져나가거나 구조적인 재배열에 따른 전도성 PEDOT 입자의 접촉 면적이 증가함에 따른 것으로 사료되고, 광학적인 방법으로 PSS의 추출을 관찰하였다. 솔벤트 후처리 공정은 PEDOT : PSS 박막의 전도도를 향상하는 매우 효과적인 방법으로 확인되었고, 저가형 플렉서블 유기전자소자의 투명전극으로써의 사용이 적합할 것으로 예상된다.

Research on Liquefaction Characteristics of SF6 Substitute Gases

  • Yuan, Zhikang;Tu, Youping;Wang, Cong;Qin, Sichen;Chen, Geng
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2545-2552
    • /
    • 2018
  • $SF_6$ has been widely used in high voltage power equipment, such as gas insulated switchgear (GIS) and gas insulated transmission line (GIL), because of its excellent insulation and arc extinguishing performance. However, $SF_6$ faces two environmental problems: greenhouse effect and high liquefaction temperature. Therefore, to find the $SF_6$ substitute gases has become a research hotspot in recent years. In this paper, the liquefaction characteristics of $SF_6$ substitute gases were studied. Peng-Robinson equation of state with the van der Waals mixing rule (PR-vdW model) was used to calculate the dew point temperature of the binary gas mixtures, with $SF_6$, $C_3F_8$, $c-C_4F_8$, $CF_3I$ or $C_4F_7N$ as the insulating gas and $N_2$ or $CO_2$ as the buffer gas. The sequence of the dew point temperatures of the binary gas mixtures under the same pressure and composition ratio was obtained. $SF_6/N_2$ < $SF_6/CO_2$ < $C_3F_8/N_2$ < $C_3F_8/CO_2$ < $CF_3I/N_2$ < $CF_3I/CO_2$ < $c-C_4F_8/N_2$ < $C_4F_7N/N_2$ < $c-C_4F_8/CO_2$ < $C_4F_7N/CO_2$. $SF_6/N_2$ gas mixture showed the best temperature adaptability and $C_4F_7N/CO_2$ gas mixture showed the worst temperature adaptability. Furthermore, the dew point temperatures of the $SF_6$ substitute gases at different pressures and the upper limits of the insulating gas mole fraction at $-30^{\circ}C$, $-20^{\circ}C$ and $-10^{\circ}C$ were obtained. The results would supply sufficient data support for GIS/GIL operators and researchers.

Analysis on Temperature Distribution and Current-Carrying Capacity of GIL Filled with Fluoronitriles-CO2 Gas Mixture

  • Chen, Geng;Tu, Youping;Wang, Cong;Cheng, Yi;Jiang, Han;Zhou, Hongyang;Jin, Hua
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2402-2411
    • /
    • 2018
  • Fluoronitriles-$CO_2$ gas mixtures are promising alternatives to $SF_6$ in environmentally-friendly gas-insulated transmission lines (GILs). Insulating gas heat transfer characteristics are of major significance for the current-carrying capacity design and operational state monitoring of GILs. In this paper, a three-dimensional calculation model was established for a GIL using the thermal-fluid coupled finite element method. The calculated results showed close agreement with experimentally measured data. The temperature distribution of a GIL filled with the Fluoronitriles-$CO_2$ mixture was obtained and compared with those of GILs filled with $CO_2$ and $SF_6$. Furthermore, the effects of the mixture ratio of the component gases and the gas pressure on the temperature rise and current-carrying capacity of the GIL were analyzed. Results indicated that the heat transfer performance of the Fluoronitriles-$CO_2$ gas mixture was better than that of $CO_2$ but worse than that of $SF_6$. When compared with $SF_6$, use of the Fluoronitriles-$CO_2$ gas mixture caused a reduction in the GIL's current-carrying capacity. In addition, increasing the Fluoronitriles gas component ratio or increasing the pressure of the insulating gas mixture could improve the heat dissipation and current-carrying capacity of the GIL. These research results can be used to design environmentally-friendly GILs containing Fluoronitriles-$CO_2$ gas mixtures.

건조공기의 연면방전에서 가스압력과 극간거리에 따른 매질효과분석 (Analysis of Medium Effect by Gas Pressure and Gap at Surface Discharge of Dry Air)

  • 임동영;민경준;박혜리;최은혁;최상태;배성우;이상봉;박원주;이광식
    • 조명전기설비학회논문지
    • /
    • 제27권10호
    • /
    • pp.86-92
    • /
    • 2013
  • In studies on an alternative insulating gas of $SF_6$ gas, the section of the alternative gas and an insulation technique to improve its low dielectric strength have been reported, but very few attempts have been made at the dependence of a gas pressure and a gap as well as the medium effect in the alternative gas. The purpose of this paper is to analyze the dependence of the gas pressure and the gap at surface flashover voltage in dry air. The dependence is analyzed based on the medium effect. The medium effect by the gas pressure and the gap can be explained by surface roughness of a solid dielectric and an electrode as well as an electric field which decreases due to the correlation between the collision ionization coefficient and the gap, respectively. In addition, an insulation technique which can fabricate a compact eco-friendly gas insulated switchgear is proposed by the results of this paper.

분로리액터 개폐 과전압 해석을 위한 EMTP 모델링 (Electromagnetic Transient Program Modeling for Analysis of Switching Over-Voltage on Shunt Reactor)

  • 오승열;전인영;한기선;강지원
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권4호
    • /
    • pp.393-397
    • /
    • 2020
  • 무효전력 보상설비인 분로리액터는 전력계통의 부하 패턴에 따라서 하루에도 수 회 정도 차단기에 의해 운전되거나 정지된다. 분로리액터개폐 시 몇 가지 요인에 의해 발생하는 과전압은 차단기의 절연 성능을 저하시키며, 계통을 구성하는 전력기기에 심각한 전압 스트레스를 유발한다. 분로리액터 개폐 과정에서 발생하는 과도현상을 측정하는 것은 계통을 모의하여 차단기 성능을 검증하는 시험소 수준에서는 가능하나, 실제 계통 운전 중에 발생하는 과도현상을 측정하는 것은 여러 가지 제약으로 어려움이 있다. 따라서 본 논문에서는 실 계통에서 지상 소전류 차단과정에서 가혹한 과도회복전압(TRV: Transient Recovery Voltage)을 유발하는 재발호(reignition)나 전류재단(current chopping) 현상에 대한 해석을 위해 전자계과도해석프로그램(EMTP: Electro-magnetic Transients Program)을 활용한 모델링 과정과 이를 토대로 분로리액터 개폐 과정에서 차단기의 고장을 유발하는 주된 현상에 대해 해석하고자 한다.

Performance and heat transfer analysis of turbochargers using numerical and experimental methods

  • Pakbin, Ali;Tabatabaei, Hamidreza;Nouri-Bidgoli, Hossein
    • Steel and Composite Structures
    • /
    • 제43권5호
    • /
    • pp.523-532
    • /
    • 2022
  • Turbocharger technology is one of the ways to survive in a competitive market that is facing increasing demand for fuel and improving the efficiency of vehicle engines. Turbocharging allows the engine to operate at close to its maximum power, thereby reducing the relative friction losses. One way to optimally understand the behavior of a turbocharger is to better understand the heat flow. In this paper, a 1.7 liter, 4 cylinder and 16 air valve gasoline engine turbocharger with compressible, viscous and 3D flow was investigated. The purpose of this paper is numerical investigation of the number of heat transfer in gasoline engines turbochargers under 3D flow and to examine the effect of different types of coatings on its performance; To do this, modeling of snail chamber and turbine blades in CATIA and simulation in ANSYS-FLUENT software have been used to compare the results of turbine with experimental results in both adiabatic and non-adiabatic (heat transfer) conditions. It should be noted that the turbine blades are modeled using multiple rotational coordinate methods. In the experimental section, we simulated our model without coating in two states of adiabatic and non-adiabatic. Then we matched our results with the experimental results to prove the validation of the model. Comparison of numerical and experimental results showed a difference of 8-10%, which indicates the accuracy and precision of numerical results. Also, in our studies, we concluded that the highest effective power of the turbocharged engine is achieved in the adiabatic state. We also used three types of SiO2, Sic and Si3N4 ceramic coatings to investigate the effect of insulating coatings on turbine shells to prevent heat transfer. The results showed that SiO2 has better results than the other two coatings due to its lower heat transfer coefficient.

단상 유도전동기의 구속운전조건에서 화재 위험성에 관한 연구 (Study on the Fire Risk in Locked-Rotor Condition of Single-Phase Induction Motor)

  • 지홍근;송재용
    • 한국화재소방학회논문지
    • /
    • 제34권2호
    • /
    • pp.64-71
    • /
    • 2020
  • 본 논문에서는 단상 유도전동기의 구속운전조건에서 화재 위험성에 관하여 기술하였다. 일반적으로 전동기의 고장 발생은 회전자의 회전 불량 등으로 인한 구속운전조건의 형태로 나타난다. 전동기의 기동 시에는 정격전류의 약 2~15배에 달하는 큰 돌입전류가 흐르게 되는데 단상 유도전동기에서 구속운전조건이 발생하게 되면 돌입전류에 준하는 전류가 지속적으로 고정자권선을 통해 흐르게 된다. 구속운전조건에서 고정자권선을 통해 흐르는 과전류에 의해 고정자 권선 내부의 온도가 상승하고, 최종적으로 절연물을 매개로 화재로 이어지는 특징이 나타난다. 본 논문에서는 임의로 구속운전조건을 만들고, 이때 고정자권선에 흐르는 과전류의 크기 및 온도 상승을 측정하였다. 실험결과로부터 구속운전조건에서는 정격전류에 비해 약 7배의 과전류가 발생하였으며, 고정자권선 내부의 온도가 약 300 ℃ 정도에서 화재로 진전되는 것을 확인하였다.