• Title/Summary/Keyword: Instantaneous reactive power

Search Result 103, Processing Time 0.031 seconds

A Sensorless Speed Control of a Permanent Magnet Synchronous Motor that the Estimated Speed is Compensated by using an Instantaneous Reactive Power (순시무효전력을 이용하여 추정속도를 보상한 영구자석 동기전동기의 센세리스 속도 제어)

  • 최양광;김영석;전병호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.577-585
    • /
    • 2003
  • This paper proposes a new speed sensorless control method of a permanent magnet synchronous motor using an instantaneous reactive power. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimation error, the estimated speed is compensated by using an instantaneous reactive power. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

Graphical Representation of the Instantaneous Compensation Power Flow for Single-Phase Active Power Filters

  • Jung, Young-Gook
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1380-1388
    • /
    • 2013
  • The conventional graphical representation of the instantaneous compensation power flow for single-phase active power filters(APFs) simply represents the active power flow and the reactive power flow which flowing between the power source and the active filter / the load. But, this method does not provide the information about the rectification mode and the compensation mode of APFs, especially, the loss for each mode was not considered at all. This is very important to understand the compensation operation characteristics of APFs. Therefore, this paper proposes the graphical representation of the instantaneous compensation power flow for single-phase APFs considering the instantaneous rectification mode and the instantaneous inversion mode. Three cases are verified in this paper - without compensation, with compensation of the active power 'p' and the fundamental reactive power 'q', and with compensation of only the distorted power 'h'. To ensure the validity of the proposed approach, PSIM simulation is achieved. As a result, we could confirm that the proposed approach was easy to explain the instantaneous compensation power flow considering the instantaneous rectification mode and the instantaneous inversion mode of APFs, also, Total Harmonic Distortion(THD)/Power Factor (P.F) and Fast Fourier Transform(FFT) analysis were compared for each case.

A Study on the Decoupled Control of the Active and Reactive Power using Instantaneous Power Control Theory (순시전력 제어 이론을 이용한 유/무효전력의 독립제어에 관한 연구)

  • Kim, Eung-Sang;Kim, Ji-Won;Kim, Yeong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.678-682
    • /
    • 1999
  • In this paper, we propose the algorithm which can control active power and reactive power independently in Battery Energy Storage System. The proposed algorithm is based on the instantaneous power theory that the inner product of the voltage vector and current vector represents the active power and the cross product of those represents the reactive power, and it can control active power and reactive power independently. To verify the validity of the proposed algorithm, we make model of the real power system in th KERI and simulate this algorithm. As a result of this simulation, we verified that the proposed algorithm can control active power and reactive power independently.

  • PDF

A study on the Reactive Power Compensation using Instantaneous Power for Self Commutated Static Var Compensator (순시전력을 이용한 자려식 SVC의 무효전력보상에 관한 연구)

  • Eum, Sang-O;Kim, Jong-Yun;Jeon, Nae-Suck;Park, Chan-Kun;Lee, Sung-Geun;Kim, Yoon-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1206-1208
    • /
    • 2000
  • The Static var compensators(SVC) are intensively studied to realize high performance power equipment for electric power systems. Rapid and continuous reactive compensation by the SVC contributes to voltage stabilization, power oscillation damping, overvoltage suppression, minimization of transmission losses and so on. In this paper, instantaneous power vector theory which can expresses the instantaneous apparent power vector is proposed to control reactive power. The validity of the proposed method is confirmed by simulation studies.

  • PDF

New Sensorless Vector Control for Permanent Magnet Synchronous Motor using instantaneous Reactive Power (순시 무효전력을 이용한 영구자석 동기전동기의 센서리스 제어)

  • Jun, Byoung-Ho;Choi, Yang-Kwang;Kim, Young-Seok;Shin, Jae-Wha;Han, Yoon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.970-972
    • /
    • 2003
  • This paper presents a new speed sensorless control method of a permanent magnet synchronous motor based on instantaneous reactive power. The proposed algorithm is constructed by instantaneous reactive power in a synchronously rotating reference frame and is not affected by mechanical motor parameters, because mechanical equation is not used. The effectiveness of the proposed system is confirmed by the experimental results.

  • PDF

Improvement of line Current using Instantaneous Real Power Compensation of DSTATCOM (DSTATCOM의 순시 유효전력 보상을 이용한 선로의 전류 개선)

  • Jeong, Su-Yeong;Kim, Tae-Hyeon;Mun, Seung-Il;Gwon, Uk-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.327-332
    • /
    • 2002
  • In this paper, conventional reactive power compensation is defined and instantaneous real control concept for shunt converters is proposed. This equipment incorporates the compensation function of harmonics at the distribution line by nonlinear load. These methodologies are applied to IEEE 13 distribution system with the modeling of nonlinear load using EMTEDC/PSCAD package. Simulation with EMTDC results presented to confirm that the new approach has better performance than those obtained by controllers based on traditional concepts of reactive power compensation.

Instantaneous Active/Reactive Power Compensation of Distribution Static Compensator using State Observer (배전용 정지형 보상기의 상태관측기를 이용한 순시 유효/무효전력 보상)

  • Kim, Hyeong-Su;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1377-1382
    • /
    • 2008
  • DSTATCOM(distribution static compensator) is one of the custom power devices, and protects a distribution line from unbalanced and harmonic current caused by non-linear and unbalanced loads. Researches about DSTATCOM are mainly divided two parts, one is the calculation of compensation current and the other part is the current control. Conventional researches use a LPF(low pass filter) to eliminate ripple component at the calculation of compensation current. But this method has a problem that LPF's characteristics restrict the compensation performance of instantaneous active and reactive power. This paper proposes a calculation of compensation current using state observer that can be a counterproposal of conventional methods using LPF. Improved performance of instantaneous active and reactive power compensation was shown by experiments.

A Sensorless Control of IPMSM using the Adaptive Back-EMF Estimator and Improved Instantaneous Reactive Power Compensator (적응 역기전력 추정기와 개선된 순시 무효전력 보상기를 이용한 돌극형 영구자석 전동기의 센서리스 제어)

  • Lee, Joonmin;Hong, Joo-Hoon;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.794-803
    • /
    • 2016
  • This paper propose a sensorless control system of IPMSM with a adaptive back-EMF estimator and improved instantaneous reactive power compensator. A saliency-based back-EMF is estimated by using the adaptive algorithm. The estimated back-EMF is inputted to the phase locked loop(PLL) and the improved instantaneous reactive power(IRP) compensator for estimating the position/speed of the rotor and compensating the error components between the estimated and the actual position, respectively. The stability of the proposed system is achieved through Popov's hyper stability criteria. The validity of proposed algorithm is verified by the simulations and experiments.

Speed Sensorless Control for Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power and a Fuzzy PI Compensator (순시무효전력과 퍼이 이득 보상기를 이용한 IPMSM의 속도 센서리스 제어)

  • Kang, Hyoung-Seok;Shin, Jae-Hwa;You, Wan-Sik;Kang, Min-Hyoung;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.173-174
    • /
    • 2007
  • In this paper, a new speed sensorless control based on an instantaneous reactive power and a fuzzy PI compensator are proposed for the interior permanent magnet synchronous motor (IPMSM) drives. The conventional fixed gain PI and PID controllers are very sensitive to step change of command speed, parameter variations and load disturbance. Also, to the estimated speeds are compensated by using an instantaneous reactive power in synchronously rotating reference frame. In a fuzzy compensator, the system control parameters are adjusted by a fuzzy rule based system, which is a logical model of the human behavior for process control. The effectiveness of algorithm is confirmed by the experiments.

  • PDF

Sensorless Control for a Interior Permanent Magnet Synchronous Motor based on an Instantaneous Reactive Power (순시 무효전력을 이용한 IPM모터의 센서리스 제어)

  • Joung, Woo-Taik;Kang, Hyung-Seok;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1447-1449
    • /
    • 2005
  • An interior permanent magnet synchronous motor(IPMSM) is receiving increased attention for many industrial applications because of its high torque to inertia ratio, superior power density, and high efficiency. This paper presents algorithm for speed sensorless vector control based on an Instantaneous Reactive Power. Effectiveness or algorithm is confirmed by the experiments.

  • PDF