• 제목/요약/키워드: Instance

검색결과 2,055건 처리시간 0.029초

판에 고속 충돌하는 봉의 동적 파괴에 관한 연구 (Study on the Dynamic Fracture of Rod Impacting on Plate at High Speed)

  • 조재웅;한문식
    • 한국공작기계학회논문집
    • /
    • 제16권4호
    • /
    • pp.108-112
    • /
    • 2007
  • This study analyzes the dynamic fracture phenomenon that aluminum rod impacts aluminum plate or rigid plate and deforms. The value of von-Mises stress in the instance that aluminum rod deforms on rigid plate after contact becomes 1.3 times as large as that in the instance of contact. On the contrary, the value of von-Mises stress in the instance that aluminum rod goes through aluminum plate after contact becomes 0.7 times as small as that in the instance of contact. The value of internal energy in the instance that aluminum rod contacts aluminum plate becomes 2.3 times as large as that in the instance that aluminum rod contacts rigid plate. But the value of kinetic energy in the instance that aluminum rod contacts aluminum plate becomes 0.9 times as small as that in the instance that aluminum rod contacts rigid plate. The value of internal energy in the instance that aluminum rod goes through aluminum plate after contact becomes 0.7 times as small as that in the instance that aluminum rod impacts rigid plate and deforms. And the value of sliding energy in the instance that aluminum rod contacts aluminum plate becomes 0.2 times as small as that in the instance that aluminum rod contacts rigid plate. The value of total energy in case that aluminum rod impacts aluminum plate becomes 0.9 times as small as that in the case that aluminum rod impacts rigid plate.

Efficiently Processing Skyline Query on Multi-Instance Data

  • Chiu, Shu-I;Hsu, Kuo-Wei
    • Journal of Information Processing Systems
    • /
    • 제13권5호
    • /
    • pp.1277-1298
    • /
    • 2017
  • Related to the maximum vector problem, a skyline query is to discover dominating tuples from a set of tuples, where each defines an object (such as a hotel) in several dimensions (such as the price and the distance to the beach). A tuple, an instance of an object, dominates another tuple if it is equally good or better in all dimensions and better in at least one dimension. Traditionally, skyline queries are defined upon single-instance data or upon objects each of which is associated with an instance. However, in some cases, an object is not associated with a single instance but rather by multiple instances. For example, on a review website, many users assign scores to a product or a service, and a user's score is an instance of the object representing the product or the service. Such data is an example of multi-instance data. Unlike most (if not all) others considering the traditional setting, we consider skyline queries defined upon multi-instance data. We define the dominance calculation and propose an algorithm to reduce its computational cost. We use synthetic and real data to evaluate the proposed methods, and the results demonstrate their utility.

Model Accumulation 을 이용한 SAT Hard Instance의 해결 방법 연구 (Research of model accumulation to solve SAT Hard instance)

  • 장민경;최진영;곽희환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 가을 학술발표논문집 Vol.30 No.2 (1)
    • /
    • pp.505-507
    • /
    • 2003
  • SAT 문제는 하드웨어/소프트웨어 검증과 모델 체킹 등 다양한 분야에서 유용하게 사용되고 있으나 복잡도가 NP-complete 라는 어려움을 가지고 있다. 다양한 알고리즘과 휴리스틱, 도구들이 개발되었지만 그럼에도 불구하고 해결할 수 없는 hard instance 들이 존재한다. 이 논문에서는 그러한 hard instance를 해결하기 위한 방법의 하나로 model accumulation을 제안한다.

  • PDF

Multiple Instance Mamdani Fuzzy Inference

  • Khalifa, Amine B.;Frigui, Hichem
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제15권4호
    • /
    • pp.217-231
    • /
    • 2015
  • A novel fuzzy learning framework that employs fuzzy inference to solve the problem of Multiple Instance Learning (MIL) is presented. The framework introduces a new class of fuzzy inference systems called Multiple Instance Mamdani Fuzzy Inference Systems (MI-Mamdani). In multiple instance problems, the training data is ambiguously labeled. Instances are grouped into bags, labels of bags are known but not those of individual instances. MIL deals with learning a classifier at the bag level. Over the years, many solutions to this problem have been proposed. However, no MIL formulation employing fuzzy inference exists in the literature. Fuzzy logic is powerful at modeling knowledge uncertainty and measurements imprecision. It is one of the best frameworks to model vagueness. However, in addition to uncertainty and imprecision, there is a third vagueness concept that fuzzy logic does not address quiet well, yet. This vagueness concept is due to the ambiguity that arises when the data have multiple forms of expression, this is the case for multiple instance problems. In this paper, we introduce multiple instance fuzzy logic that enables fuzzy reasoning with bags of instances. Accordingly, a MI-Mamdani that extends the standard Mamdani inference system to compute with multiple instances is introduced. The proposed framework is tested and validated using a synthetic dataset suitable for MIL problems. Additionally, we apply the proposed multiple instance inference to fuse the output of multiple discrimination algorithms for the purpose of landmine detection using Ground Penetrating Radar.

프로세스 마이닝을 위한 거리 기반의 API(Anomaly Process Instance) 탐지법 (Detection of API(Anomaly Process Instance) Based on Distance for Process Mining)

  • 전대욱;배혜림
    • 대한산업공학회지
    • /
    • 제41권6호
    • /
    • pp.540-550
    • /
    • 2015
  • There have been many attempts to find knowledge from data using conventional statistics, data mining, artificial intelligence, machine learning and pattern recognition. In those research areas, knowledge is approached in two ways. Firstly, researchers discover knowledge represented in general features for universal recognition, and secondly, they discover exceptional and distinctive features. In process mining, an instance is sequential information bounded by case ID, known as process instance. Here, an exceptional process instance can cause a problem in the analysis and discovery algorithm. Hence, in this paper we develop a method to detect the knowledge of exceptional and distinctive features when performing process mining. We propose a method for anomaly detection named Distance-based Anomaly Process Instance Detection (DAPID) which utilizes distance between process instances. DAPID contributes to a discovery of distinctive characteristic of process instance. For verifying the suggested methodology, we discovered characteristics of exceptional situations from log data. Additionally, we experiment on real data from a domestic port terminal to demonstrate our proposed methodology.

역퍼지화 기반의 인스턴스 선택을 이용한 파킨슨병 분류 (Classification of Parkinson's Disease Using Defuzzification-Based Instance Selection)

  • 이상홍
    • 인터넷정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.109-116
    • /
    • 2014
  • 본 논문에서는 분류 성능을 향상하기 위해서 Takagi-Sugeno(T-S) 퍼지 모델 기반의 가중 퍼지소속함수 기반 신경망(Neural Network with Weighted Fuzzy Membership Functions; NEWFM)을 이용한 새로운 인스턴스 선택을 제안하였다. 제안하는 인스턴스 선택은 T-S 퍼지 모델에서의 가중 평균 역퍼지화와 통계학에서 사용하는 정규분포의 신뢰구간과 같은 구간 선택을 이용하여 인스턴스를 선택하였다. 제안하는 인스턴스 선택의 분류 성능을 평가하기 위해서 인스턴스 사용 전/후에 따라서 분류 성능을 비교하였다. 인스턴스 사용 전/후에 따른 분류 성능은 각각 77.33%, 78.19%로 나타났다. 또한 인스턴스 사용 전/후에 따른 분류 성능 간에 차이점을 보여주기 위해서 통계학에서 사용하는 맥니마 검정을 사용하였다. 맥니마 검정의 결과로 유의 확률이 0.05보다 적게 나오므로 인스턴스 선택의 분류 성능이 인스턴스 선택을 하지 않는 경우의 분류 성능보다 우수함을 확인 할 수가 있었다.

Extraction of similar XML data based on XML structure and processing unit

  • Park, Jong-Hyun
    • 한국컴퓨터정보학회논문지
    • /
    • 제22권4호
    • /
    • pp.59-65
    • /
    • 2017
  • XML has established itself as the format for data exchange on the internet and the volume of its instance is large scale. Therefore, to extract similar information from XML instance is one of research topics but is insufficient. In this paper, we extract similar information from various kind of XML instances according to the same goal. Also we use only the structure information of XML instance for information extraction because some of XML instance is described without its schema. In order to efficiently extract similar information, we propose a minimum unit of processing and two approaches for finding the unit. The one is a structure-based method which uses only the structure information of XML instance and another is a measure-based method which finds a unit by numerical formula. Our two approaches can be applied to any application that needs the extraction of similar information based on XML data. Also the approach can be used for HTML instance.

A Workflow Scheduling Technique Using Genetic Algorithm in Spot Instance-Based Cloud

  • Jung, Daeyong;Suh, Taeweon;Yu, Heonchang;Gil, JoonMin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3126-3145
    • /
    • 2014
  • Cloud computing is a computing paradigm in which users can rent computing resources from service providers according to their requirements. A spot instance in cloud computing helps a user to obtain resources at a lower cost. However, a crucial weakness of spot instances is that the resources can be unreliable anytime due to the fluctuation of instance prices, resulting in increasing the failure time of users' job. In this paper, we propose a Genetic Algorithm (GA)-based workflow scheduling scheme that can find the optimal task size of each instance in a spot instance-based cloud computing environment without increasing users' budgets. Our scheme reduces total task execution time even if an out-of-bid situation occurs in an instance. The simulation results, based on a before-and-after GA comparison, reveal that our scheme achieves performance improvements in terms of reducing the task execution time on average by 7.06%. Additionally, the cost in our scheme is similar to that when GA is not applied. Therefore, our scheme can achieve better performance than the existing scheme, by optimizing the task size allocated to each available instance throughout the evolutionary process of GA.

Improved Sliding Shapes for Instance Segmentation of Amodal 3D Object

  • Lin, Jinhua;Yao, Yu;Wang, Yanjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권11호
    • /
    • pp.5555-5567
    • /
    • 2018
  • State-of-art instance segmentation networks are successful at generating 2D segmentation mask for region proposals with highest classification score, yet 3D object segmentation task is limited to geocentric embedding or detector of Sliding Shapes. To this end, we propose an amodal 3D instance segmentation network called A3IS-CNN, which extends the detector of Deep Sliding Shapes to amodal 3D instance segmentation by adding a new branch of 3D ConvNet called A3IS-branch. The A3IS-branch which takes 3D amodal ROI as input and 3D semantic instances as output is a fully convolution network(FCN) sharing convolutional layers with existing 3d RPN which takes 3D scene as input and 3D amodal proposals as output. For two branches share computation with each other, our 3D instance segmentation network adds only a small overhead of 0.25 fps to Deep Sliding Shapes, trading off accurate detection and point-to-point segmentation of instances. Experiments show that our 3D instance segmentation network achieves at least 10% to 50% improvement over the state-of-art network in running time, and outperforms the state-of-art 3D detectors by at least 16.1 AP.

엔트로피 기반 분할과 중심 인스턴스를 이용한 분류기법의 데이터 감소 (Data Reduction for Classification using Entropy-based Partitioning and Center Instances)

  • 손승현;김재련
    • 산업경영시스템학회지
    • /
    • 제29권2호
    • /
    • pp.13-19
    • /
    • 2006
  • The instance-based learning is a machine learning technique that has proven to be successful over a wide range of classification problems. Despite its high classification accuracy, however, it has a relatively high storage requirement and because it must search through all instances to classify unseen cases, it is slow to perform classification. In this paper, we have presented a new data reduction method for instance-based learning that integrates the strength of instance partitioning and attribute selection. Experimental results show that reducing the amount of data for instance-based learning reduces data storage requirements, lowers computational costs, minimizes noise, and can facilitates a more rapid search.