• Title/Summary/Keyword: Installation Robot

Search Result 96, Processing Time 0.033 seconds

THE DEVELOPMENT OF A CURTAIN WALL INSTALLATION ROBOT THROUGH THE ANALYSIS OF EXISTING CONSTRUCTION PROCESSES

  • Seung-Nam Yu ;Chong-Ho Choi ;Seung-Yel Lee;Chang-Soo Han
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.520-526
    • /
    • 2005
  • Automation in construction has been restricted to special classes of tasks. Curtain walls can be handled like standard construction materials; they are heavy but breakable, and are large but require precise installation. These characteristics make the installation of curtain walls ideal for robotic automation. There are two methods for developing construction robots: The first is approving the robot performance and applying it to the current construction methods. The second is admitting the limitation of the current robot technology and trying to optimize the current method of construction to apply the robot system. In this study, we derived the performance requirements of a curtain wall-installation robot. We also tested this robot at a real construction site and evaluated its performance. Finally, the results were analyzed, and we proposed additional research.

  • PDF

Design of Working Process for Ceiling Glass Installation Robot (천장유리 설치로봇의 자동화 공정설계)

  • Yoo, Bo-Hyun;Lee, Seung-Yeol;Gil, Myeong-Su;Lee, Sang-Heon;Lee, Kye-Young;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.837-842
    • /
    • 2007
  • Since construction materials have been towards larger and heavier, the rate of accident associated with installation works of heavy construction materials is increasing. Installation works of heavy construction materials lead to frequent accidents, increasing the WMSDs(Work-Related Musculo-Skeletal Disorders) in construction site. In case of installation work of heavy glass ceiling, the rate of accidents such as falling and collision is increasing as well. This paper describes a ergonomic design of working platform(deck) in a glass ceiling installation robot. As well as, a design of working process is considered to accomplish an efficient installation work. As a result of the design, an installation work of heavy glass ceiling by the robot will be expected safety assurance and retrenchment of the construction cost and period.

  • PDF

Tiny Magnetic Robot Mechanism and Manipulation for Stent Transportation and Installation

  • Yu, Chang-Ho;Kim, Sung Hoon
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.162-167
    • /
    • 2017
  • Magnetic spiral-type microrobots, which are driven by a rotating magnetic field, have excellent locomotive abilities, whereas their medical applications are limited in the terms of function, such as the ability to drill in blood vessels. In this study, we propose a new robot with superior applications using a magnetic spiral-type machine. The proposed robot can be applied to stent transportation and installation without a catheter. In particular, the robot can be applied to the cardiovascular system, cerebrovascular disease, and nonvascular stent applications depending on the robot size. The robot consists of two independent spiral-type machines and four magnets in total. We controlled directions of thrust force of the two machines, respectively, for active locomotion with a task. We conducted a preliminary validation of the proposed robot for stent transportation and installation through experimental analyses.

Pseudorandom Tag Arrangement for RFID Based Mobile Robot Localization (RFID 기반 이동로봇 위치 추정을 위한 의사 랜덤 태그 배치)

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.103-105
    • /
    • 2009
  • This paper presents a pseudorandom tag arrangement for improved RFID based mobile robot localization. First, four repetitive tag arrangements, including square, parallelogram, tilted square, and equilateral triangle, are examined. For each tag arrangement, the difficulty in tag installation and the problem of tag invisibility are discussed. Then, taking into account both tag invisibility and tag installation, a pseudorandom tag arrangement is proposed, which is inspired from a Sudoku puzzle. It is shown that the proposed tag arrangement exhibits spatial randomness quite successively without increased difficulty in installation.

  • PDF

On a Posture Control of Human Robot Master Arm

  • Moon, Jin-Soo;Kim, Cheul-U
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.24-31
    • /
    • 2006
  • This study developed a human robot mast arm, which has a structure similar to the human arm, with the objective of taking over human works. The robot arm was structured to reproduce human actions using three axes on each of the shoulder and the wrist based on mechanics, and the actuator of each axis adopted an ordinary DC motor. The servo system of the actuator is a one body type employing an amp for electric power, and it was designed to be small and lightweight for easy installation. We examined the posture control characteristics of the developed robot mast arm in order to test its interlocking, continuous motions and reliability.

A Virtual Simulation and Real Trajectory of 3-DOF Arm Robot (3자유도 암 로봇의 가상시뮬레이션과 실체궤적)

  • Moon, Jin-Soo;Kim, Cheul-U
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.300-305
    • /
    • 2007
  • This study developed a human robot master arm, which has a structure similar to the human arm, with the object of taking over human works. The robot arm was structured to reproduce human actions using three axes on each of the shoulder and the wrist based on mechanics, and the actuator of each axis adopted an ordinary DC motor. The servo system of the actuator is a one body type employing an amp for electric power, and it was designed to be small and lightweight for easy installation. We examined the posture control characteristics of the developed robot master arm in order to test its interlocking, continuous notions and reliability.

  • PDF

Sliding Mode Control with Bound Estimation for Robot Manipulators (경계 추정치를 가진 로봇 슬라이딩 모드 제어)

  • Yoo, Dong-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.8
    • /
    • pp.42-47
    • /
    • 2006
  • In this paper, we propose a sliding mode control with the bound estimation for robot manipulators without requiring exact knowledge of the robot dynamics. For the bound estimation, the upper bound of the uncertain nonlinearities of robot dynamics is represented as a Fredholm integral equation of the first kind and we propose an adaptive scheme which is only dependent on the sliding surface function. Also, we prove the asymptotic stability for the robot systems using two important properties in the robot dynamics: skew-symmetry and positive-definiteness of robot parameters.

Collision Avoidance Path Planning for Multi-Mobile Robot System : Fuzzy and Potential Field Method Employed (멀티 모바일 로봇 시스템의 충돌회피 경로 계획 : 퍼지 및 포텐셜 필드 방법 적용)

  • Ahn, Chang-Hwan;Kim, Dong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.163-173
    • /
    • 2010
  • In multi-mobile robot environment, path planning and collision avoidance are important issue to perform a given task collaboratively and cooperatively. The proposed approach is based on a potential field method and fuzzy logic system. For a global path planner, potential field method is employed to select proper path of a corresponding robot and fuzzy logic system is utilized to avoid collisions with static or dynamic obstacles around the robot. This process is continued until the corresponding target of each robot is reached. To test this method, several simulation-based experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.

Effective Route Decision of an Automatic Moving Robot(AMR) using a 2D Spatial Map of the Stereo Camera System

  • Lee, Jae-Soo;Han, Kwang-Sik;Ko, Jung-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.45-53
    • /
    • 2006
  • This paper proposes a method for an effective intelligent route decision for automatic moving robots(AMR) using a 2D spatial map of a stereo camera system. In this method, information about depth and disparity map are detected in the inputting images of a parallel stereo camera. The distance between the automatic moving robot and the obstacle is detected, and a 2D spatial map is obtained from the location coordinates. Then the relative distances between the obstacle and other objects are deduced. The robot move automatically by effective and intelligent route decision using the obtained 2D spatial map. From experiments on robot driving with 240 frames of stereo images, it was found that the error ratio of the calculated distance to the measured distance between objects was very low, 1.52[%] on average.

DEVELOPMENT OF A STEAM GENERATOR TUBE INSPECTION ROBOT WITH A SUPPORTING LEG

  • Shin, Ho-Cheol;Jeong, Kyung-Min;Jung, Seung-Ho;Kim, Seung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.125-134
    • /
    • 2009
  • This paper presents details on a tube inspection robotic system and a positioning method of the robot for a steam generator (SG) in nuclear power plants (NPPs). The robotic system is separated into three parts for easy handling, which reduces the radiation exposure during installation. The system has a supporting leg to increase the rigidity of the robot base. Since there are several thousands of tubes to be inspected inside a SG, it is very important to position the tool of the robot at the right tubes even if the robot base is positioned inaccurately during the installation. In order to obtain absolute accuracy of a position, the robot kinematics was mathematically modeled with the modified DH(Denavit-Hartenberg) model and calibrated on site using tube holes as calibration points. To tune the PID gains of a commercial motor driver systematically, the time delay control (TDC) based gain tuning method was adopted. To verify the performance of the robotic system, experiments on a Framatomes 51B Model type SG mockup were undertaken.