• 제목/요약/키워드: Instability Motion

Search Result 436, Processing Time 0.023 seconds

Study on the Dynamic Torsional Instability of a Thin Beam (비틀림 하중을 받는 얇은 빔의 동적 불안정성에 관한 연구)

  • 박진선;주재만;박철희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.185-190
    • /
    • 1995
  • In recent years, many researcher have been interested in the stability of a thin beam. Among them, Pai and Nayfeh[1] had investigated the nonplanar motion of the cantilever beam under lateral base excitation and chaotic motion, but this study is associated with internal resonance, i.e. one to one resonance. Also Cusumano[2] had made an experiment on a thin beam, called Elastica, under bending loads. In this experiment, he had shown that there exists out-of-plane motion, involving the bending and the torsional mode. Pak et al.[3] verified the validity of Cusumano's experimental works theoretically and defined the existence of Non-Local Mode(NLM), which is came out due to the instability of torsional mode and the corresponding aspect of motions by using the Normal Modes. Lee[4] studied on a thin beam under bending loads and investigated the routes to chaos by using forcing amplitude as a control parameter. In this paper, we are interested in the motion of a thin beam under torsional loads. Here the form of force based on the natural forcing function is used. Consequently, it is found that small torsional loads result in instability and in case that the forcing amplitude is increasing gradually, the motion appears in the form of dynamic double potential well, finally leads to complex motion. This phenomenon is investigated through the poincare map and time response. We also check that Harmonic Balance Method(H.B.M.) is a suitable tool to calculate the bifurcated modes.

  • PDF

Immediate Effects of Vibration Stimulation on the Range of Motion and Proprioception in Patients with Chronic Ankle Instability: Randomized Crossover Study (만성발목불안정성 환자의 진동자극이 가동범위 및 고유수용성감각에 미치는 즉각적인 효과: 무작위 교차 연구)

  • Chi-Bok Park;Sung-Hwan Park;Ho-Jin Jeong;Byeong-Geun Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • PURPOSE: This study examined the effect of vibration stimulation of a vibration foam roller on the change in the range of motion of the ankle joint and proprioception in patients with chronic ankle instability. An additional aim was to provide basic data for rehabilitation programs for chronic ankle instability patients. METHODS: This study was a randomized crossover design of 22 patients with chronic ankle instability. All subjects were divided into a vibrating group, a non-vibrating group, and a control group. The vibration and non-vibration groups performed the interventions, but the control group did not. For the measurement, the range of motion and proprioception of the ankle joint was measured using an electronic protractor (Electrogoniometer, BPM Pathway, UK). RESULTS: The vibration group showed significant differences in the dorsiflexion angle, dorsiflexion proprioception, and plantar flexion proprioception (p < .05). The non- vibration group showed significant differences in the dorsiflexion angle and dorsiflexion proprioceptive sensation (p < .05). The vibration group and the control group showed significant differences in dorsiflexion proprioception and plantar flexion proprioception (p < .05). CONCLUSION: The range of motion and proprioception of the ankle joint were improved in the group that received vibration stimulation after the intervention than before the intervention. Future research will be needed on patients with various diseases.

Effects of Extracorporeal Shock Wave Therapy on Ankle Function, Range of Motion, and Dynamic Balance in Patients with Chronic Ankle Instability

  • Lee, Su Bin;Kwon, Jung Won;Yun, Seong Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.3
    • /
    • pp.91-97
    • /
    • 2022
  • Purpose: This study investigated the short-term effectiveness of extracorporeal shock wave therapy (ESWT) on pain, the ankle instability, the ankle function, dorsiflexion range of motion (ROM), and dynamic balance in patients with chronic ankle instability (CAI). Methods: Eighteen participants were divided into an experimental (n=9) and control group (n=9). The ESWT in the experimental group was applied to the lateral collateral ligament in combination with the tibialis anterior whereas the ESWT was applied to the lateral collateral ligament of the ankle alone in the control group. Pain, the ankle instability, the ankle function, dorsiflexion ROM, and dynamic balance were measured using the Visual analog scale, Cumberland ankle instability tool, American Orthopedic Foot and Ankle Society ankle-hindfoot score, weight-bearing lunge, and Y-balance test, before and after ESWT intervention. Results: Significant interactions (group × time) and time effects were observed in the dorsiflexion ROM and dynamic balance. Bonferroni's post-hoc analysis showed that the experimental group revealed a more significant change in dorsiflexion ROM and dynamic balance than the control group. There was a significant time effect in the pain, the ankle instability, and the ankle function, but no significant interaction (group × time) was observed. Conclusion: The ESWT could improve the pain, ankle instability, ankle function, dorsiflexion ROM, and dynamic balance in patients with CAI. Furthermore, the ESWT combined with lateral ankle ligaments and tibialis anterior more improves the dorsiflexion ROM and dynamic balance.

Moment Whirl due to Leakage Flow in the Back Shroud Clearance of a Rotor

  • Tsujimoto, Yoshinobu;Ma, Zhenyue;Song, Bing-Wei;Horiguchi, Hironori
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.3
    • /
    • pp.235-244
    • /
    • 2010
  • Recent studies on the moment whirl due to leakage flow in the back shroud clearance of hydro-turbine runners or centrifugal pump impellers are summarized. First, destabilizing effect of leakage flow is discussed for lateral vibrations using simplified models. Then it is extended to the case of whirling motion of an overhung rotor and the criterion for the instability is obtained. The fluid moment caused by a leakage clearance flow between a rotating disk and a stationary casing was obtained by model tests under whirling and precession motion of the disk. It is shown that the whirl moment always destabilizes the whirl motion of the overhung rotor while the precession moment destabilizes the precession only when the precession speed is less than half the rotor speed. Then vibration analyses considering both whirl and precession are made by using the hydrodynamic moments determined by the model tests. For larger overhung rotors, the whirl moment is more important and cause whirl instability at all rotor speed. On the other hand, for smaller overhung rotors, the precession moment is more important and cancels the destabilizing effect of the whirl moment.

Study on the Dynamic Instability of Star-Dome Structures (스타돔의 동적 불안정 현상에 관한 연구)

  • Han, Sang-Eul;Hou, Xiao-Wu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.72-77
    • /
    • 2008
  • Stability is a very important part which we must consider in structural design. In this paper, we take advantage of finite element method, and study about parametrical instability of star-dome structures, which is subjected to harmonically pulsating load. When calculating stiffness matrix, we consider elastic stiffness and geometrical stiffness simultaneously. In equation of motion, we represent displacements and accelerations by trigonometric series expansions, and then obtain Hill's infinite determinants. After first order approximation, we can get first and second order dynamic instability region finally.

  • PDF

Dynamic Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass (축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석)

  • 현상학;유홍희
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.118-124
    • /
    • 2001
  • The effect of a concentrated mass on the regions of dynamic instability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived using Kane's method and the assumed mode method. It is found that the bending stiffness is harmonically varied by axial inertia forces due to oscillating motion. Under the certain conditions between oscillating frequency and the natural frequencies, dynamic instability may occur and the magnitude of the bending vibration increase without bound. By using the multiple time scales method, the regions of dynamic instability are obtained. The regions of dynamic instability are found to be depend on the magnitude of a concentrated mass or its location.

  • PDF

On the parametric instability of multilayered conical shells using the FOSDT

  • Lair, John;Hui, David;Sofiyev, Abdullah H.;Gribniak, Viktor;Turan, Ferruh
    • Steel and Composite Structures
    • /
    • v.31 no.3
    • /
    • pp.277-290
    • /
    • 2019
  • This paper investigates the parametric instability (PI) of multilayered composite conical shells (MLCCSs) under axial load periodically varying the time, using the first order shear deformation theory (FOSDT). The basic equations for the MLCCSs are derived and then the Galerkin method is used to obtain the ordinary differential equation of the motion. The equation of motion converted to the Mathieu-Hill type differential equation, in which the DI is examined employing the Bolotin's method. The expressions for left and right limits of dimensionless parametric instability regions (PIRs) of MLCCSs based on the FOSDT are obtained. Finally, the influence of various parameters; lay-up, shear deformations (SDs), aspect ratio, as well as loading factors on the borders of the PIRs are examined.

Radiographic Parameters of Segmental Instability in Lumbar Spine Using Kinetic MRI

  • Jang, Se-Youn;Kong, Min-Ho;Hymanson, Henry J.;Jin, Tae-Kyung;Song, Kwan-Young;Wang, Jeffrey C.
    • Journal of Korean Neurosurgical Society
    • /
    • v.45 no.1
    • /
    • pp.24-31
    • /
    • 2009
  • Objective : To investigate the effectiveness of radiographic parameters on segmental instability in the lumbar spine using Kinetic magnetic resonance imaging (MRI). Methods : Segmental motion, defined as excessive (more than 3 mm) translational motion from flexion to extension, was investigated in 309 subjects (927 segments) using Kinetic MRI. Radiographic parameters which can help indicate segmental instability include disc degeneration (DD), facet joint osteoarthritis (FJO), and ligament flavum hypertrophy (LFH). These three radiographic parameters were simultaneously evaluated, and the combinations corresponding to significant segmental instability at each level were determined. Results : The overall incidence of segmental instability was 10.5% at L3-L4, 16.5% at L4-L5, and 7.3% at L5-S1. DD and LFH at L3-L4 and FJO and LFH at L4-L5 were individually associated with segmental instability (p<0.05). At L4-L5, the following combinations had a higher incidence of segmental instability (p<0.05) when compared to other segments : (1) Grade IV DD with grade 3 FJO, (2) Grade 2 or 3 FJO with the presence of LFH, and (3) Grade IV DD with the presence of LFH. At L5-S1, the group with Grade III disc and Grade 3 FJO had a higher incidence of segmental instability than the group with Grade I or II DD and Grade 1 FJO. Conclusion : This study showed that the presences of either Grade IV DD or grade 3 FJO with LFH at L4-L5 were good indicators for segmental instability. Therefore, using these parameters simultaneously in patients with segmental instability would be useful for determining candidacy for surgical treatment.

Effects of Flossing Band Exercise on Range of Motion, Vertical Jump in Taekwondo Demonstration Athletes with Functional Ankle Instability

  • Lee, Jin-Wook;Byun, Yong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.97-105
    • /
    • 2022
  • The purpose of this study was to analyze the effects of flossing band exercise on the range of motion and vertical jump for taekwondo demonstration athletes with ankle functional instability. The subjects of this study were 21 male Taekwondo Demonstration Team athletes enrolled at D University. They were divided into functional ankle instability group(FAIG, n=7), mild ankle instability group(MAIG, n=7), and ankle stability group(ASG, n=7). All groups performed a acute flossing band exercise program. The results of this study are as follows; dorsi flexion(p<.01), inversion(p<.01), eversion(p<.05) and vertical jump(p<.01) were significantly increased in the FAIG. Flossing band exercise of Taekwondo demonstration team with FAI increased joint range of motion and vertical jump. Therefore, it was confirmed that it could be an intervention that can improve performance and reduce the risk of ankle injury.

Multi-Physics Simulations of Fluidelastic Instability for Tube Bundles in Cross-Flow (유체-구조 상호작용을 적용한 튜브다발의 유체탄성불안정성 과도적 전산해석)

  • Lee, Min-Hyung;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.2
    • /
    • pp.174-180
    • /
    • 2004
  • Failure of tube bundles due to excessive flow-induced vibrations continues to affect the performance of nuclear power plant Early experimental studies concentrated on rigid structures and later investigators dealt with elastic structures because of their importance in many engineering fields. On the other hand, much less numerical work has been carried out, because of the numerical complexity associated with the problem. Conventional approaches usually decoupled the flow solution from the structural problem. The present numerical study proposes the methodology in analyzing the fluidelastic instability occurring in tube bundles by coupling the Computational fluid Dynamics (C%) with the tube equation of motions. The motion of the structures is modeled by a spring-damper-mass system that allows transnational motion in two directions (a two-degree-of-freedom system). The fluid motion and the cylinder response are solved in an iterative way, so that the interaction between the fluid and the structure can be accounted for property. The aim of the present work is to predict the fluidelstic instability of tube bundles and the associated phenomena, such as the response of the cylinder, the unsteady lift and drag on the cylinder, the vortex shedding frequency.