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Studv on the Dynamic Torsional Instability of a Thin Beam
Jin-Sun Park, Jae-Man Joo, Chol-Hui Pak

result in instability and in case that the forcing
Introduction . .. . .
D amplitude is increasing gradually, the motion appears
In recent years, many researcher have been in the form of dynamic double potential well, finally

interested in the stability of a thin beam.

Among them, Pai and Nayfeh[1] had investigated the
nonplanar motion of the cantilever beam under
lateral base excitation and chaotic motion, but this
study is associated with internal resonance, ie. cne
to one resonance.

Also Cusumano[2] had made an experiment on a
thin beam, called FElastica, under bending loads. In
this experiment, he had shown that there exists
out-of-plane motion, involving the bending and the
torsional mode.

Pak et all3] verified the validity of Cusumano’s
experimental works theoretically and defined the
existence of Non-Local Mode(NLM), which is came
out due to the instability of torsional mode and the
corresponding aspect of motions

Normal Modes. Lee[4] studied on a thin beam

by using the

under bending loads and investigated the routes to
chaos by using forcing amplitude as a control
parameter.

In this paper, we are interested in the motion of a
thin beam under torsional loads. Here the form of
force based on the natural forcing function is used.

Consequently, it is found that small torsional loads
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leads to complex motion.

This phenomenon is investigated through the
poincaré map and time response. We also check that
Harmonic Balance Method(H.B.M) is a suitable tool

to calculate the bifurcated modes.

Equations of motion.

Equations of motion are derived from the following

simple mechanical analogue to a thin beam.

Fig 1. A simple mechanical analogue to a thin beam.

The Kinetic energy 7 and potential energy V are

obtained
T= %(G% a’+ ‘72'2)""2[11'1 2
v=thai+ha) =% <1>
By nondimensionalization, the non-dimensional

kinetic energy 7 and potential energy V are as
follows
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T= 1 +w)at+5 5 _
l,,22, 2 @
V=5(%"+5)
where, x=V J k//m g, is the nondimensionalized
torsional displacement, y = \/Tn g is the nondim-
ensionalized bending displacement, u=m/J &, is

coupling parameter and p the frequency ratio.
By Lagrange equation, the equations of motion are

written as

(A +uy?)x + 2pyyx + px =0 @
3
y—uxly +y =0

Free vibration and Bifurcation modes

It is easily understood from Eq.(3) that there are
two trivial solutions x =0, y = 0.

One motion is the torsional mode, which is equal to
the condition x *+ 0 and ¥ = 0 as shown in Fig 2
Another motion is the bending mode, x =0 and y +
0 in Fig. 2. These are straight lines in the x-y
configuration space, hence these are called similar
normal modes. Besides, there are other types of
periodic solutions from perturbation analysis. For
example, Nonlinear Normal Mode(NNM), Elliptic
Orbit(EO) and Non-Local Mode(NLM) as shown in
Fig. 2. These all are involved both the torsional
mode and the bending modes. Especially in case of
NLM, it is characterized that the period of the
bending mode is twice that of the torsional mode.

NLM Bending Mode

~_ x x
'orsional Made

V=nh V=nh

Fig 2. Various periodic solutions of elastica.

To study the stability of torsional mode, perturbation
¢ is superimposed, resulting in

x = A sinpt

4)

y 0+ ¢

Substituting Eq.(4) into Eq.(3), the resulting equation
is tuned to be the form of standard Mathieu's
equation.

£+ (8+2ecos2c) ¢t = 0 6)

=l ,4? 5= L —pt =4
where, &= 4#A. Py +2e, r=pt, ar

The corresponding stability chart is shown in Fig. 3.
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Fig 3. Stability chart for the torsional mode

The stability is changed when &= # +2¢ crosses

the transition curve §=— % e+t .

The total energy H at the point ®, denoted h, , can
be calculated from the stability chart. After stability
change happen, the eigenfunction corresponds to

transition curve is seed for bifurcated mode.

Stable motion

Unstable motion

(a) (b)
Fig 4. Poincaré map of torsional mode
(a) pre-bifurcation (b) pro-bifurcation

Hence Harmonic Balance Method(HBM) can be

utilized and the form of solution are as follows
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x = Asinowt

(6)
y = B+ Ccos 2wt
Substituting Eq.(6) into Eq.(3) to obtain
Al 9~ —p*(B*+BC+5 €] =0
B- 1 mtAXB++ 0 =0 @

(1-4w?)C— % pANB+C) =0

Relation between frequency o and amplitudes can

be obtained from Eq.(7) as depicted in Fig. 5.
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Fig 5. Backborn curve of free vibration

This curve is called backborn curve. It indicates that
the amplitudes are inversely proportional to
frequency .

According as the total energy H increases, the
motion goes along the the arrowed line in Fig. 3.

At the point ®, total energy H is equal to h, . For
the value of H < h, the system is in the state of
the pure torsional mode, which shown as depicted in
Fig 6. (a). The other hand for H > h, , though this
area is unstable region, shaded area in Fig. 3, the
new stable motion(NLM) can be observed as
shown in Fig. 6(b).

Forced Vibration

The equation to the forced vibration of thin beam is
Q+uyDx+2 n0y v % + p°x = F,sint
®
y — wxty+y =0

where, 2 is the excitation frequency and F, is

K = 10 (ho) Ha=10bo

w )
Fig 6. Existence of Nonlocal mode on configuration space

(a) pre-bifurcation (b) post-bifurcation

excitation amplitude.

Substituting Eq.(6), in which @ is replaced by 2
into Eq.(8)
harmonic terms, the following equations can be

obtained.

and collecting the coefficients of

Al p*~@~p@(B+BC+E ] =F, ©-a)

B—%y.QzAz(B+%C)=0 (9-b)

1 —4.02)C—-%-u.QZAZ(B+C‘) =0 (9-¢)

From Eq.(9), there are two cases according to the
value of B and C. One is that B and C is equal to
zero, which means the pure torsional mode. The
other case is that B and C is not equal to zero,
which means the coupled torsional bending mode.

In case of the pure torsional mode, the pure

F
torsional amplitude A= 7 _” & can easily be

obtained from Eq.(9-a).

If the linearized frequency ratio p is equal to the
excitation frequency £, it means that the system is
in the state of resonance.

Also, in case of the coupled torsional bending mode,
B and C in Eq.9-b) and Eq.(9-¢) must have a
non-trivial solution( ie. B=0, C=0 ).

So Eq.(9-b) and Eq.(9-c) are rewritten as follows,

(1-4)B-4¢C =0

4
(10
-5 B+ (1-42 - )C =0

where, a = p @ A?.
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To have non-trivial solutions, the determinant 4

_a
4

must vanish.
The value that determinant 4 is equal to zero is the

value that the arrowed line passes the point @ in
Fig. 3. If the exact transition curve, having higher

order term than second order in e, is used,

determinant 4 is much closer to zero. Hence the

following relations can be obtained from Eq. (9).

Al 8(—42— U -1+
{ — (4@ AL Yu

B = AL U -D+1
2

c =\/7p — P F/A) (12)

L2 -yae-v+1
+ 3 (—42 - U7 )+

Sweeping excitation frequency £, relation between

where, S =

amplitudes and the excitation frequency, can be
obtained as shown in Fig. 7. Such a graph is called
frequency response curve.
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Fig 7. Frequency response curve

From Eq.(12), the bending amplitude B and C vary
according to the forcing amplitude F,. But as the
torsional amplitude A is a function of 2, so A is

independent of the forcing amplitude F..

Also when the forcing amplitude is very small,
frequency response curve is similar to backborn

curve of free vibration.

Stability Analysis

To study the stability of the torsional mode,

¢ is perturbed in v ,

y = 0+ ¢ 13

Substituting Eq.(13) into Eq.(8), retaining only linear

terms in perturbation ¢, resulting in

&+ (8 + 2€cos2t ) ¢ =

__.L — _ M Fa 2
where, & & +2¢, € 4(p2—92)

This is the type of standard Matheiu's equation,
which is exact equal to that of free vibration if

starting point # is replaced by é in Fig. 3

Using F as control parameter, the corresponding

amplitude can be obtained as shown in Fig. 8
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Fig 8. Bifurcation diagram by using F as parameter
Ap : amplitude of pure torsional mode
Ac : amplitude of coupled mode

There is a stability change at point ® as depicted
in Fig. 8 In case that pure torsional motion is used
as initial condition, for F > Fe, Fe@ indicated the
forcing amplitude at point @, the pure torsional

motion is in unstable state. The value of the forcing
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amplitude at point @ in the stability chart is equal

to that of Fig. 8. Finally the corresponding forcing

Py
amplitude at point @ is to be Fg= %L

Numerical simulations, using Runge-Kutta 4th
algorithm, are accomplished to show that it is in

accord with analytic results.
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Fig 9. Diagram for transition from the pure torsional
mode to the bending mode
(a) Bending Deflection (b) Bending Amplitude

The result of Fig 8. is in accord with that of Fig 9.
Poincaré map can be used to determine the stability
of the torsional mode. Fig. 10 (a) represents the
periodic motion, which has one period motion but in
Fig. 10 (b) the exact period can’t be compute, which

means the unstable motion.

s (5}

Fig. 10 Poincaré Map for pre- and pro-stability change

In wunstable region, the motion is sometimes
represented as the type of dynamic double potential
well behavior as shown Fig. 11.

Dynamic double potential well behavior is that the
thin beam move from left hand to right hand or vice

versa.
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Fig. 11 Behavior of dynamic double potential well
Remarks

It is found that small torsional loads can make the
motion of beam to be unstable. Also we know that
there exist two types of motions, one is the pure
torsional mode and the other is the coupled torsional
bending mode. When the pure torsional motion
passes the point ® in Fig. 8, stability change
happen. And this make the pure torsional motion to
be unstable. The other hand in case that coupled
torsional bending mode are regarded as initial
conditions, the corresponding behaviors exist in
region prior to point @ in Fig. 8 The type of
dynamic double potentiali well behaviors can be also
observed in Fig. 11.

It is also checked that HB.M method is a suitable

tool in order to compute the bifurcated mode.
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