• Title/Summary/Keyword: Inside humidity

Search Result 382, Processing Time 0.024 seconds

Analysis of Actual State of Facilities for Pleurotus eryngii Cultivation - Based on Western Gyeongnam Area - (큰느타리버섯 재배사의 실태분석 - 서부경남지역을 중심으로 -)

  • Yoon Yong Cheol;Suh Won Myung;Yu Chan
    • Journal of Bio-Environment Control
    • /
    • v.13 no.4
    • /
    • pp.217-225
    • /
    • 2004
  • This study was performed to provide the basic knowledge about the mushroom cultivation facilities. Classified current status of cultivation facilities in Gyeongnam province was investigated by questionnaire. The structure of Pleurotus eryngii cultivation facilities can be classified into the simple and permanent frame type. The simple frame structures were mostly single-span type, on the other hand, the permanent frame structures were more multi-span than simple structures. And the scale of cultivation facilities was very different regardless of structural type. But as a whole, the length, width and ridge height were prevailing approximately 20.0 m, $6.6\~7.0m$ and $4.6\~5.0m$ range, respectively. The floor area was about $132\~160\;m^2$, and floor was built with concrete to protect mushrooms from various harmful infection. The roof slope of the simple and permanent type showed about $41.5^{\circ}\;and\;18.6\~28.6^{\circ}$, respectively. The width and layer number of growing bed for mushroom cultivation were around $1.2\~1.6m$, 4 layers in common, respectively. Most of year round cultivation facilities were equipped with cooler, heater, humidifier, and ventilating fan. Hot water boiler was the most commonly used heating system, the next was electric heater and then steam boiler. The industrial air conditioner has been widely used for cooling. And humidity was controlled mostly by ultra-wave or centrifuging humidifier. But some farmers has been using nozzle system for auxiliary purpose. More then $90\%$ of the mushroom house had the independent environment control system. The inside temperature was usually controlled by sensor, but humidity and $CO_2$ concentration was controlled by timer for each growing stage. The capacity of medium bottle was generally 850 cc and 1100cc, some farms used 800 cc, 950 co and 1,250 cc. Most of mushroom producted has been usually shipped to both circulating company and joint market.

Strategies about Optimal Measurement Matrix of Environment Factors Inside Plastic Greenhouse (플라스틱온실 내부 환경 인자 다중센서 설치 위치 최적화 전략)

  • Lee, JungKyu;Kang, DongHyun;Oh, SangHoon;Lee, DongHoon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.2
    • /
    • pp.161-170
    • /
    • 2020
  • There is systematic spatial variations in environmental properties due to sensitive reaction to external conditions at plastic greenhouse occupied 99.2% of domestic agricultural facilities. In order to construct 3 dimensional distribution of temperature, relative humidity, CO2 and illuminance, measurement matrix as 3 by 3 by 5 in direction of width, height and length, respectively, dividing indoor space of greenhouse was designed and tested at experimental site. Linear regression analysis was conducted to evaluate optimal estimation method in terms with horizontal and vertical variations. Even though sole measurement point for temperature and relative humidity could be feasible to assess indoor condition, multiple measurement matrix is inevitably required to improve spatial precision at certain time domain such as period of sunrise and sunset. In case with CO2, multiple measurement matrix could not successfully improve the spatial predictability during a whole experimental period. In case with illuminance, prediction performance was getting smaller after a time period of sunrise due to systematic interference such as indoor structure. Thus, multiple sensing methodology was proposed in direction of length at higher height than growing bed, which could compensate estimation error in spatial domain. Appropriate measurement matrix could be constructed considering the transition of stability in indoor environmental properties due to external variations. As a result, optimal measurement matrix should be carefully designed considering flexibility of construction relevant with the type of property, indoor structure, the purpose of crop and the period of growth. For an instance, partial cooling and heating system to save a consumption of energy supplement could be successfully accomplished by the deployment of multiple measurement matrix.

Methods that can be Substituted for Earth Healing of Seedling by Using the Plastic Vinyl and their Micro-climatical Characteristics (프라스틱비닐제품(製品)을 이용(利用)한 가식대치방법(假植代置方法)과 미기상학적(微氣象學的) 특성(特性))

  • Ma, Sang Kyu;Lee, Jang Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.47 no.1
    • /
    • pp.44-51
    • /
    • 1980
  • In order to find out the suitable methods that can omit the earth healing and increase the survival through improving the seedling-healing and transportable methods. Several trials with plastic vinyl have been done and its results are as follows: 1. Though P. rigitaeda seedling have been stored in the black and white vinyl sack for 35 days in the storehouse. This seedling have survived with very high percentage as Table 1. This means that the earth healing work at the nursery or planting area can be omitted if seedling sould be stored in the storehouse by using the vinyl sack. The possibilities of long-period storage in the black and white vinyl sack seem to be come from the reasons that air humidity in the sack is nearly 100% and its air temperature is only around $15^{\circ}C$ with very little difference between day and night time. This sack also can be utilized in place of the planting sack, and though this sack with seedling have been laid under direct sunshine for 1 to 2 days. Any difference between the sack stored in the storehouse has not been observed on the survival specially Table 2. 2. When the bundled seedling have been covered with the black and white vinyl instead of earth healing, even if these seedling have been laid for 18 days under the vinyl. This seedling show us high survival as Table 3. High humidity with nearly 95%, very little difference of air temperature between day and night time under the vinyl and not so big difference between out-and inside temperature could be reasons of high survival to be considered. So through covering by the black and white vinyl. The labour power for earth healing works can be saved also. 3. In order to protect the healed seedling from the direct sunshine and the eva-transpiration. Black vinyl net and reed mat could be effective for this purpose. Because vinyl net could intercept around one to third, reed mat two to third of total solar energy and also suppress more than 50% of total water loss by the transpiration.

  • PDF

Ventilation at Supra-Optimal Temperature Leading High Relative Humidity Controls Powdery Mildew, Silverleaf Whitefly, Mite and Inhibits the Flowering of Korean Melon in a Greenhouse Cultivation (참외 시설 재배 시 고온에서의 환기 처리에 의한 상대습도 상승과 흰가루병, 담배가루이, 응애 방제 및 개화 억제)

  • Seo, Tae Cheol;Kim, Jin Hyun;Kim, Seung Yu;Cho, Myeong Whan;Choi, Man Kwon;Ryu, Hee Ryong;Shin, Hyun Ho;Lee, Choung Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • This study was conducted to investigate the effect of ventilation at high temperature on the control of powdery mildew, silverleaf whitefly two-spotted spider mite occurred at Korean melon cultivation greenhouse, and on leaf rolling and flowering of the plant in summer season. 'Alchanggul' grafted onto 'Hidden Power' rootstock was planted on soil bed with the distance of 40 cm. Three ventilation temperatures of 45℃, 40℃, and 35℃ as set points were compared. Ventilation treatment was done by control of side window operation from 18th June to 13th July when silverleaf whitefly, mite, and powdery mildew were occurred in all greenhouses. The temperature inside greenhouse was increased up to the set temperature point on sunny days and maintained for about 9 hours with high relative humidity at 45℃ condition. The differences of day maximum air temperature and day minimum RH were the highest at 45℃ treatment. After 11 days of treatments, the damage by powdery mildew and two-spotted spider mite was almost recovered at 45℃ treatment but not at 40 and 35℃. The population of silverleaf whitefly and two-spotted spider mite were significantly decreased at 45℃ treatment at 14 days after treatment, while powdery mildew symptom was not significantly decreased. Leaf rolling was observed at high temperature but not severe at 45℃ treatment. After 26 days of treatments, female flowers did not bloom at all at 45℃ treatment, and the number of male flowers was 1.2 among 15 nodes of newly grown shoots. As the result, it indicates that ventilation at the high temperature of 45℃ for about 2 to 3 weeks can be an applicable method to control above mentioned pests and disease, and to recover the vegetative growth of Korean melon by reducing flowering of the plant.

Comparison of Heating Characteristics of Electric Heating Element Heater and Oil Hot Air Heater in Single Span Greenhouses (전기발열체 난방기 및 유류온풍 난방기의 단동온실 난방 특성 비교)

  • Kwon, Jin Kyung;Kim, Seung Hee;Shin, Young An;Lee, Jae Han;Park, Kyeong Sub;Kang, Youn Koo
    • Journal of Bio-Environment Control
    • /
    • v.26 no.4
    • /
    • pp.324-332
    • /
    • 2017
  • The comparative experiments were conducted for single span greenhouses where cucumbers were cultivated to analyze the effect of heating between a carbon fiber electric heating element heater and an oil hot air heater in terms of the inside climate, energy consumption and plant growth. In order to analyze the effect of heating capacity, 6, 9, and 16 kW of electric powers were supplied to the electric heating element for same setting temperature of 15?. As a result, as the heating capacity increased, the number of ON-OFF cycles of the electric heating element and the temperature inside the greenhouse increased proportionally. In the comparison of two heaters, it was shown that the temperature and relative humidity distributions of the electric heating element installed greenhouse was much uniform than those of the oil hot air heater installed greenhouse. The heating energy consumptions during the heating period of 79 days were 867L for the oil hot air heater and 8,959 kWh for the electric heating element heater, and the heating costs were 607 and 403 thousand won respectively. In the electric heating element installed greenhouse, the cucumber growth was slightly better and the yield was 4.3% higher than those of the oil hot air heater installed greenhouse, but there were no statically significant difference in the cucumber growth and yield between greenhouses.

Cooling Effect of Air in Greenhouse Using A Fog Sprayer Consisted of Two-fluid Nozzle with Turbo Fan (터보 팬 2류체 노즐로 구성한 포그 분무장치를 이용한 온실 내 공기의 냉각 효과)

  • Kim, Tae-Kyu;Min, Young-Bong;Kim, Do-Wan;Kim, Myung-Kyu;Moon, Sung-Dong;Chung, Tae-Sang
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.119-127
    • /
    • 2012
  • For the promotion of the evaporative cooling efficiency of hot air in greenhouse in summer, a fog sprayer consisted of a high volume spraying two-fluid nozzle with turbo fan and a blowing fan was set up at 2.2 m height from bottom of small glass greenhouse and tested to estimate the possibility of the greenhouse cooling. The mean droplet size and the volume sprayed by one of fog sprayer were $29{\mu}m$ and $160m{\ell}/min$. All the droplets sprayed and blown by the fog sprayer were evaporated within 2 m radius. The result from the cooling test that two sprayers set up in glass greenhouse of plane area $228m^2$ was represented lower cooling effect that the temperature and relative humidity of inside air of greenhouse were $28.8^{\circ}C$ and 87.5% when those of outside air of greenhouse were $30.2^{\circ}C$ and 81.2%. Through investigation of literatures and results of the cooling test, it was estimated that the water spraying rate of evaporative cooling of single span greenhouse with 50% light curtain and with air change rate of 1 volume/min was $10m{\ell}/min/m^2$ so that the inside air temperature may cool down $2{\sim}3^{\circ}C$ on the basis of $35^{\circ}C$ atmospheric temperature in summer of south korean area.

An Analysis of a Porous Film Containing $Chamaecyparis$ $obtusa$ Extract (편백나무 추출물을 함유한 다공성 필름 분석)

  • Kim, Kyeong-Yee;Lee, Eun-Kyung
    • The Korean Journal of Food And Nutrition
    • /
    • v.24 no.4
    • /
    • pp.551-558
    • /
    • 2011
  • This present study was performed to analyze the efficiency and volatility of a porous film containing $Chamaecyparis$ $obtusa$ extract as a method to effectively package food compounds. Phytoncide was contacted the state of gas and showed effective antimicrobial properties. Limonene can be distilled without decomposition as a relatively stable terpene and was one of the extract components. $Chamaecyparis$ $obtusa$ essential oil. The optimal solvent composition was a ratio 5:20:0.3 of T-500:ethanol:hardener to effectively manufacture film containing phytoncide essential oil and the minimum antibacterial concentration was 2%. The films were made under different conditions(A-50LF1, A-25SF2, B-50SF1, C-50LF1, C-25SF2 and D-50SF1) containing phytoncide and the amounts of limonene inside the 1-L reaction chamber depending on storage were measured by gas chromatography-mass selective detention. The results showed that the 25SF2(width, 25 mm; length, 20 cm) revealed more amount of limonene compared with 50LF1(width 50 mm, length 20 cm). We confirmed that the gas emission amount showed a better layer on the film side than on the internal film. An effect of film thickness on phytoncide emissions was observed in that the amounts was less than the expectation for a thicker film at the beginning time, but the emitting amounts increased with increasing storage periods. In the storage testing of various films at $35^{\circ}C$ and 70% humidity for 14 days, 25SF2 showed longer preservation compared with that of 50LF in the case of bread. $C.$ $obtusa$ essential oil is a useful fresh ingredients, hence, analysis of limonene emission kinetics from various film was helpful to develop films with an optimal antimicrobial effect, and will allow application of such films in food packaging systems.

Effect of Light-Quality Control on Growth of Ledebouriella seseloides Grown in Plant Factory of an Artificial Light Type (인공광 식물공장내 광질 제어가 방풍나물 생장에 미치는 영향)

  • Heo, Jeong-Wook;Kim, Dong-Eok;Han, Kil-Su;Kim, Sook-Jong
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.3
    • /
    • pp.193-200
    • /
    • 2013
  • BACKGROUND: Plant factory system of an artificial light type using Light-Emitting Diodes (LEDs), fluorescent light, or metal halide lamp instead of sun light is an ultimated method for plant production without any pesticides regardless of seasonal changes. The plant factory is also completely isolated from outside environmental conditions such as a light, temperature, or humidity compared to conventional greenhouse. Light-environment control such as a quality or quantity in the plant factory system is essential for improving the growth and development of plant species. However, there was little report that the effects of various light qualities provided by LEDs on Ledebouriella seseloides growth under the plant factory system. METHODS AND RESULTS: Ledebouriella seseloides seedlings transplanted at urethane sponge were grown in the plant factory system of a horizontal type with LED artificial lights for 90 days. Yamazaki solution for hydroponic culture of the seedlings was regularly irrigated by the deep flow technique (DFT) system on the culture gutters. Electrical Conductivity (EC) and pH of the solution was recorded at 1.4 ds/m and 5.8 in average, respectively during the experimental period. Number of unfolded leaves, leaf length, shoot fresh and dry weight of the seedlings were three times measured in every 30 days after beginning of the experiment. Blue LEDs, red LEDs, and fluorescent lights inside the plant factory were used as light sources. Conventional fluorescent lamps were considered as a control. In all the treatment, light intensity was maintained at $100{\mu}mol/m^2/s$ on the culture bed. Fresh weight of the seedlings was 3.7 times greater in the treatment with the mixture radiation of fluorescent light and blue+red LEDs (1:3 in energy ratio; Treatment FLBR13) than in fluorescent light treatment (Treatment FL). In FLBR13 treatment, dry weight per seedling was two times greater than in FL or BR11 treatment of blue+red LEDs (1:3 in energy ratio; Treatment BR11) during the culture period. Increasing in number of unfolded leaves was also significantly affected by the FLBR13 treatment comparing with BR11 treatment. CONCLUSION(S): Hydroponic culture of Ledebouriella seseloides seedlings was successfully achieved in the plant factory system with mixture lights of blue, red LEDs and fluorescent lights. Shoot growth of the seedlings was significantly promoted by the FLBR13 with the mixture radiation of fluorescent light, blue, and red LEDs under 1:3 mixture ratio of blue and red LEDs during the experimental period compared to conventional light conditions.

A Practice-Oriented Study on Sawdust File Filteration Composting of High Moisture Pig Slurry (고수분 돈분슬러리의 톱밥여과 퇴비화 현장적용 연구)

  • Ryoo, J.W.
    • Journal of Animal Environmental Science
    • /
    • v.14 no.2
    • /
    • pp.129-138
    • /
    • 2008
  • This study was carried out to investigate the operating characteristics, water balance and chemical properties of compost during the composting with pig slurry on-farm trial. The composting plant with sawdust pile filteration was done in a forced aeration inside a house and equipped with a turning machine moving on a rails. The composting pit was 4.6m wide, 53m long and the maximum height was 2m. A field scale aerobic composting facility was tested the composting efficiency of high moisture pig slurry. The sawdust materials remained 6 months. Pig slurry was added to compost pile every other day during 6 months run. The temperature in compost pile and compost house, and input and output of moisture were measured during composting process. The result are summarized as follows; 1. The temperature of compost was varied in range of at $22.4^{\circ}C{\sim}71.1^{\circ}C$. After turning, the composting temperature decreased to $50^{\circ}C{\sim}36^{\circ}C$ during $3{\sim}5$ hours, and then raised to $64.5^{\circ}C$ 2. The temperature of compost house was maintained $20^{\circ}C{\sim}30^{\circ}C$, and relative humidity was varied in range of $50{\sim}99%$. 3. BOD, CODcr and SS of leachate water was reduced 89.5%, 81.2%, 97.5%, respectively. 4. The content of heavy metal in the final compost was lower those of Korea standards. 5. The amount of effluent was 10.2%. Total evaporation during composting Period were 74.8%. The amount of slurry per $1m^3$ sawdust was $3.16m^3$ without treatment of effluent output.

  • PDF

Monitoring soybean growth using L, C, and X-bands automatic radar scatterometer measurement system (L, C, X-밴드 레이더 산란계 자동측정시스템을 이용한 콩 생육 모니터링)

  • Kim, Yi-Hyun;Hong, Suk-Young;Lee, Hoon-Yol;Lee, Jae-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.191-201
    • /
    • 2011
  • Soybean has widely grown for its edible bean which has numerous uses. Microwave remote sensing has a great potential over the conventional remote sensing with the visible and infrared spectra due to its all-weather day-and-night imaging capabilities. In this investigation, a ground-based polarimetric scatterometer operating at multiple frequencies was used to continuously monitor the crop conditions of a soybean field. Polarimetric backscatter data at L, C, and X-bands were acquired every 10 minutes on the microwave observations at various soybean stages. The polarimetric scatterometer consists of a vector network analyzer, a microwave switch, radio frequency cables, power unit and a personal computer. The polarimetric scatterometer components were installed inside an air-conditioned shelter to maintain constant temperature and humidity during the data acquisition period. The backscattering coefficients were calculated from the measured data at incidence angle $40^{\circ}$ and full polarization (HH, VV, HV, VH) by applying the radar equation. The soybean growth data such as leaf area index (LAI), plant height, fresh and dry weight, vegetation water content and pod weight were measured periodically throughout the growth season. We measured the temporal variations of backscattering coefficients of the soybean crop at L, C, and X-bands during a soybean growth period. In the three bands, VV-polarized backscattering coefficients were higher than HH-polarized backscattering coefficients until mid-June, and thereafter HH-polarized backscattering coefficients were higher than VV-, HV-polarized back scattering coefficients. However, the cross-over stage (HH > VV) was different for each frequency: DOY 200 for L-band and DOY 210 for both C and X-bands. The temporal trend of the backscattering coefficients for all bands agreed with the soybean growth data such as LAI, dry weight and plant height; i.e., increased until about DOY 271 and decreased afterward. We plotted the relationship between the backscattering coefficients with three bands and soybean growth parameters. The growth parameters were highly correlated with HH-polarization at L-band (over r=0.92).