• 제목/요약/키워드: Insect cell transporter

검색결과 11건 처리시간 0.022초

Cross-reactivity of Human Polyclonal Anti-GLUT1 Antisera with the Endogenous Insect Cell Glucose Transporters and the Baculovirus-expressed GLUT1

  • Lee, Chong-Kee
    • 대한의생명과학회지
    • /
    • 제7권4호
    • /
    • pp.161-166
    • /
    • 2001
  • Most mammalian cells take up glucose by passive transport proteins in the plasma membranes. The best known of these proteins is the human erythrocyte glucose transporter, GLUT1. High levels of heterologous expression far the transporter are necessary for the investigation of its three-dimensional structure by crystallization. To achieve this, the baculovirus expression system has become popular choice. However, Spodoptera frugiperda Clone 9 (Sf9) cells, which are commonly employed as the host permissive cell line to support baculovirus replication and protein synthesis, grow well on TC-100 medium that contains 0.1% D-glucose as the major carbon source, suggesting the presence of endogenous glucose transporters. Furthermore, very little is known of the endogenous transporters properties of Sf9 cells. Therefore, human GLUT1 antibodies would play an important role for characterization of the GLUT1 expressed in insect cell. However, the successful use of such antibodies for characterization of GLUT1 expression m insect cells relies upon their specificity for the human protein and lack of cross-reaction with endogenous transporters. It is therefore important to determine the potential cross-reactivity of the antibodies with the endogenous insect cell glucose transporters. In the present study, the potential cross-reactivity of the human GLUT1 antibodies with the endogenous insect cell glucose transporters was examined by Western blotting. Neither the antibodies against intact GLUT1 nor those against the C-terminus labelled any band migrating in the region expected fur a protein of M$_r$ comparable to GLUT1, whereas these antibodies specifically recognized the human GLUT1. Specificity of the human GLUT1 antibodies tested was also shown by cross-reaction with the GLUT1 expressed in insect cells. In addition, the insect cell glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Investigation of the Nature of the Endogenous Glucose Transporter(s) in Insect Cells

  • Lee, Chong-Kee
    • BMB Reports
    • /
    • 제32권5호
    • /
    • pp.429-435
    • /
    • 1999
  • Unlike the mammalian glucose transporter GLUT1, little is known about the nature of the endogenous sugar transporter(s) in insect cells. In order to establish the transport characteristics and other properties of the sugar transport proteins of Sf9 cells, a series of kinetic analyses was performed. A saturable transport system for hexose uptake has been revealed in the insect cells. The apparent affinity of this transport system(s) for 2-deoxy-D-glucose was relatively high, the $K_m$ for uptake being <0.5 mM. To further investigate the substrate and inhibitor recognition properties of the insect cell transporter, the ability of other sugars or drugs to inhibit 2-deoxy-D-glucose transport was examined by measuring inhibition constants ($K_j$). Transport was inhibited by D-mannose, D-glucose, and D-fructose. However, the apparent affinity of the C-4 epimer, D-galactose, for the Spodoptera transporter was relatively low, implying that the hydroxyl group at the C-4 position may play a role in the strong binding of glucose and mannose to the transporter. The results also showed that transport was stereoselective, being inhibited by D-glucose but not by L-glucose. It is therefore concluded that insect cells contain an endogenous glucose transport activity that in several aspects resembles the human erythrocyte glucose transporter. However, the mammalian and insect transporters were different in some of their kinetic properties, namely, their affinities for fructose and for cytochalasin B.

  • PDF

The Uptake of 2-deoxy-D-glucose (2dGlc) by the Endogenous Sugar Transporter(s) of Spodoptera frugiperda Clone 21-AE Cells and the Inhibition of 2dGIc Transport in the Insect Cells by Fructose and Cytoc halasin B

  • Lee, Chong-Kee
    • 대한의생명과학회지
    • /
    • 제9권4호
    • /
    • pp.177-181
    • /
    • 2003
  • The baculovirus/Spodoptera frugiperda (Sf) cell system has become popular for the production of large amounts of the human erythrocyte glucose transporter, GLUT1, heterologously. However, it was not possible to show that the expressed transporter in insect cells could actually transport glucose. The possible reason for this was that the activity of the endogenous insect glucose transporter was extremely high and so rendered transport activity resulting from the expression of exogenous transporter very difficult to detect. Sf21-AE cells are commonly employed as the host permissive cell line to support the baculovirus AcNPV replication and protein synthesis. The cells grow well on TC-100 medium that contains 0.1 % D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, unlike the human glucose transporter, very little is known about properties of the endogenous sugar transporter(s) in insect cells. Thus, the uptake of 2-deoxy-D-glucose (2dGlc) by Sf21-AE cells and the inhibition of 2dGlc transport in the insect cells by fructose and cytochalasin B were investigated in the present work. The binding assay of cytochalasin B was also performed, which could be used as a functional assay for the endogenous glucose transporter(s) in the insect cells. Sf21-AE cells were infected with the recombinant virus AcNPV-GT or no virus, at a multiplicity of infection (MOI) of 5. Infected cells were resuspended in PBS plus and minus 300 mM fructose, and plus and minus 20 $\mu$M cytochalasin B for use in transport assays. Uptake was measured at 28$^{\circ}C$ for 1 min, with final concentration of 1 mM deoxy-D-glucose, 2-[1,2-$^3$H]- or glucose, L-[l,$^3$H]-, used at a specific radioactivity of 4 Ci/mol. The results obtained demonstrated that the sugar uptake in uninfected cells was stereospecific, and was strongly inhibited by fructose but only poorly inhibitable by cytochalasin B. It is therefore suggested that the Sf21-AE glucose transporter has very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter.

  • PDF

Photoaffinity Labelling of the Human Erythrocyte Glucose Transporters Expressed in Spodoptera frugiperda Clone 9 (Sf9) Cells

  • Lee, Chong-Kee
    • 대한의생명과학회지
    • /
    • 제8권4호
    • /
    • pp.211-215
    • /
    • 2002
  • The baculovirus/Sf9 cell expression can be employed as a powerful system for producing large amounts of the human erythrocyte glucose transporter, GLUT1 heterologously In order to exploit the system further, it is necessary to develop a convenient method for demonstrating that the transporter expressed in insect cells is biologically active. To achieve this, we have expressed the human CLUT1 in insect cells and photolabelled the expressed protein with [$^3$H] cytochalasin B, a potent inhibitor of the human erythrocyte glucose transporter. Subsequently, the labelled proteins were analysed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). Membranes labelled with [$^3$H] cytochalasln B in the presence of L-Glucose yielded a single sharp peak of labelling of apparent $M_r$ 45,000 on SDS/polyacrylamide gels. The mobility of this peak corresponded exactly to that of the band detected by anti-glucose transporter antibodies on Western blots of membranes prepared from insect cells infected with recombinant virus. In addition, the sharpness of the radioactive peak provides further evidence for the conclusion that the expressed protein is much less heavily and heterogeneously glycosylated than its erythrocyte counterpart. No peak of labelling was seen with the membranes prepared from non-infected Sf9 cells. Furthermore, the incorporation of label into this peak was completely inhibited by the presence of 500 mM-D-Glucose during tile photolabelling procedure, showing the stereoselectivity of the labelling. These evidences clearly show that human glucose transporter expressed in insect cells exhibits native-like biological activity, and that photolabelling with [$^3$H] cytochalasin B can be a convenient means for analysing the biological activity of the transport protein expressed in insect cells.

  • PDF

Subcellular Location of Spodpotera Cell-expressed Human HepG2-type Glucose Transport Protein

  • Lee, Chong-Kee
    • 대한의생명과학회지
    • /
    • 제18권2호
    • /
    • pp.160-164
    • /
    • 2012
  • The baculovirus/insect cell expression system is of great value for the large-scale production of normal and mutant mammalian passive glucose-transport proteins heterologously for structural and functional studies. In most mammalian cells that express HepG2, this transporter isoform is predominantly located at the cell surface. However, it had been reported that heterologous expression of other membrane proteins using the baculovirus system induced highly vacuolated cytoplasmic membranes. Therefore, how a cell responds to the synthesis of large amounts of a glycoprotein could be an interesting area for investigation. In order to examine the subcellular location of the human HepG2 transport proteins when expressed in insect cells, immunofluorescence studies were carried out. Insect cells were infected with the recombinant baculovirus AcNPVHIS-GT or with wild-type virus at a MOI of 5, or were not exposed to viral infection. A high level of fluorescence displayed in cells infected with the recombinant virus indicated that transporters are expressed abundantly and present on the surface of infected Sf21 cells. The evidence for the specificity of the immunostaining was strengthened by the negative results shown in the negative controls. Distribution of the transporter protein expressed in insect cells was further revealed by making a series of optical sections through an AcNPVHIS-GT-infected cell using a confocal microscope, which permits optical sectioning of cell sample. These sections displayed intense cytoplasmic immunofluorecence surrounding the region occupied by the enlarged nucleus, indicating that the expressed protein was present not only at the cell surface but also throughout the cytoplasmic membranous structures.

Tryptic Digestion and Cytochalasin B Binding Assay of the Human HepG2-Type Glucose Transporter Expressed in Spodoptera frugiperda Clone 21-AE Cells

  • 이종기
    • 대한의생명과학회지
    • /
    • 제11권1호
    • /
    • pp.57-61
    • /
    • 2005
  • The number of sites at which a protein can be readily cleaved by a proteolytic enzyme is greatly influenced by its three-dimensional structure. For native, properly-folded proteins both the rate of cleavage and number of sites at which cleavage takes place are usually much less than for the denatured protein. In order to compare the tertiary structure of recombinant HepG2 type glucose transporter with that of its native counterpart in the erythrocyte, the pattern of tryptic cleavage of the protein expressed in insect cell membranes was therefore examined. After 30 minutes digestion, a fragment of approximate Mr 19,000-21,000 was generated. In addition to this, there were two less intensely stained fragments of apparent Mr 28,000 and 17,000. The pattern of labelling was similar up to 2 hours of digestion. However, the fragments of Mr 19,000-21,000 and Mr 17,000 were no longer detectable after 4 hours digestion. The observation of a very similar pattern of fragments yielded by tryptic digestion of the HepG2 type transporter expressed in insect cells suggests that the recombinant protein exhibits a tertiary structure similar if not identical to that of its human counterpart. Also, the endogenous sugar transporter(s) present in Sf21 cells did not bind cytochalasin B, the potent transporter inhibitor. Therefore, the baculovirus/Spodoptera frugiperda (Sf) cell expression system could be very useful for production of large amounts of human glucose transporters, heterologously.

  • PDF

A Study on the Inhibition of 2-deoxy-D-Glucose Transport of the Endogenous Glucose Transporters in Spodoptera frugiperda Clone 21-AE Cells by Using Hexoses

  • Lee Chong-Kee
    • 대한의생명과학회지
    • /
    • 제11권4호
    • /
    • pp.487-492
    • /
    • 2005
  • The baculovirus/insect cell expression system is of great value in the study of structure-function relationships in mammalian glucose-transport proteins by site-directed mutagenesis and for the large-scale production of these proteins for mechanistic and biochemical studies. Spodoptera frugiperda Clone 21 (Sf2l) cells grow well on TC-100 medium that contains $0.1\%$ D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, very little is known about the properties of the endogenous sugar transporter(s) in Sf2l cells, although a saturable transport system for hexose uptake has been previously revealed in the Sf cells. In order to further examine the substrate and inhibitor recognition properties of the Sf2l cell transporter, the ability of hexoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. The $K_i's$ for reversible inhibitors were determined from plots of uptake versus inhibitor concentration. Transport was effectively inhibited by D-mannose and D-glucose. Of the hexoses tested, L-glucose had the least effect on 2dGlc transport in the Sf2l cells, indicating that the transport is stereoselective. Unlike the human HepG2 type glucose transport system, D-mannose had a somewhat greater affinity for the Sf2l cell transporter than D-glucose, implying that the hydroxyl group at the C-2 position is not necessary for strong binding. However, epimerization at the C-4 position of D-glucose (D-galactose) resulted in a dramatic decrease in affinity of the hexose for the Sf2l cell transporter. Such a lowering of affinity might be the result of the involvement of the C-4 hydroxyl in hydrogen bonding. It is therefore suggested that Sf2l cells were found to contain an endogenous sugar transport activity that in several aspects resembles the human HepG2 type glucose transporter, although the insect and human transporters do differ in their affinity for cytochalasin B.

  • PDF

Functional Assessments of Spodpotera Cell-expressed Human Erythrocyte-type Glucose Transport Protein with a Site-directed Mutagenesis

  • 이종기
    • 대한의생명과학회지
    • /
    • 제14권2호
    • /
    • pp.119-122
    • /
    • 2008
  • The baculovirus/insect cell expression system is of great value in the study of structure-function relationships in mammalian glucose-transport proteins by site-directed mutagenesis and for the large-scale production of these proteins for mechanistic and biochemical studies. In order to exploit this, the effects of substitution at the highly conserved residue glutamine 282 of the human erythrocyte-type glucose transporter have been examined by in vitro site-directed mutagenesis. The modified human transport protein has been expressed in Spodoptera frugiperda 21 cells by using the recombinant baculovirus AcNPV-GTL. To assess the functional integrity of the expressed transporter, measurements of the transport inhibitor cytochalasin B binding were performed, involving the membranes prepared from 4 days post infection with no virus, with wild-type virus or AcNPV-GTL virus. Data obtained showed that there was little or no D-glucose-inhibitable binding in cells infected with the wild type or no virus. Only the recombinant virus infected cells exhibited specific binding, which is inhibitable by D- but not by L-glucose. However, there was a notable reduction in the affinity for the potent inhibitor cytochalasin B when binding measurements of AcNPV-GTL were compared with those of AcNPV-GT, which has no substitution. It is thus suggested that although the modified and unmodified human transporters differed slightly in their affinity for cytochalasin B, the glutamine substitution did not interfere the heterologous expression of the human transporter in the insect cells.

  • PDF

Effects of Pentoses on 2-deoxy-D-Glucose Transport of the Endogenous Sugar Transport Systems in Spodoptera frugiperda Clone 9 Cells

  • 이종기
    • 대한의생명과학회지
    • /
    • 제15권1호
    • /
    • pp.55-60
    • /
    • 2009
  • Insect cells such as Spodoptera frugiperda Clone 9 (Sf9) cells are widely chosen as the host for heterologous expression of a mammalian sugar transport protein using the baculovirus expression system. Characterization of the expressed protein is expected to include assay of its function, including its ability to transport sugars and to bind inhibitory ligands such as cytochalasin B. It is therefore very important first to establish the transport characteristics and other properties of the endogenous sugar transport proteins of the host insect cells. However, very little is known of the transport characteristics of Sf9 cells, although their ability to grow on TC-100 medium strongly suggested the presence of endogenous glucose transport system. In order to investigate the substrate and inhibitor recognition properties of the Sf9 cell transporter, the ability of pentoses to inhibit 2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants $(K_i)$. To determine the time period over which of sugar into the Sf cells was linear, the uptake of 2dGlc 0.1mM extracellular concentration was measured over periods ranging from 30 seconds to 30 minutes. The uptake was linear for at least 2 minutes at the concentration, implying that uptake made over a 1 minute time course would reflect initial rates of the sugar uptake. The data have also revealed the existence of a saturable transport system for pentose uptake by the insect cells. The transport was inhibited by D-xylose and D-ribose, although not as effective as hexoses. However, L-xylose had a little effect on 2dGlc transport in the Sf9 cells, indicating that the transport is stereoselective. Unlike the human erythrocyte-type glucose transport system, D-ribose had a somewhat greater apparent affinity for the Sf9 cell transporter than D-xylose. It is therefore concluded that Sf9 cells contain an endogenous sugar transport activity that in some aspects resembled the human erythrocyte-type counterpart, although the Sf9 and human transport systems do differ in their affinity for cytochalasin B.

  • PDF

Hexose Uptake and Kinetic Properties of the Endogenous Sugar Transporter(s) in Spodoptera frugiperda Clone 21-AE Cells

  • Lee Chong-Kee
    • 대한의생명과학회지
    • /
    • 제11권3호
    • /
    • pp.327-332
    • /
    • 2005
  • Sf21 cells become popular as the host permissive cell line to support the baculovirus AcNPV replication and protein synthesis. The cells grow well on TC-100 medium that contains $0.1\%$ D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose transporters. However, unlike human glucose transporters, very little is known about the characteristics of the endogenoussugar transporter(s) in Sf21 cells. Thus, some kinetic properties of the sugar transport system were investigated, involving the uptake of 2-deoxy-D-glucose (2dG1c). In order to obtain a true measure of the initial rate of uptake, the uptake of $[^3H]2dGlc$ from both low $(100{\mu}M)$ and high (10 mM) extracellular concentrations was measured over periods ranging from 30 sec to30 min. The data obtained indicated that the uptake was linear for at least 2 min at both concentrations, suggesting that measurements made over a 1min time course would reflect initial rates of the jexpse uptake. To determine $K_m\;and\;V_{max}$ of the endogenous glucose transporter(s) in Sf21 cells, the uptake of 2dG1c was measured over a range of substrate concentrations $(50{\mu}M\~10mM)$ 2dG1c uptake by the Sf21 cells appeared to involve both saturable and non-saturable (or very low affinity) components. A saturable transport system for 2dG1c was relatively high, the $K_m$ value for uptake being < 0.45 mM. The $V_{max}$ value obtained for 2dG1c transport in the Sf21 cells was about 9.7-folds higher than that reported for Chinese hamster ovary cells, which contain a GLUT1 homologue. Thus, it appeared that the transport activity of the Sf21 cells was very high. In addition, the Sf21 glucose transporter was found to have very low affinity for cytochalasin B, a potent inhibitor of human erythrocyte glucose transporter

  • PDF