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A Study on the Inhibition of 2-deoxy-D-Glucose Transport of the
Endogenous Glucose Transporters in Spodoptera frugiperda
Clone 21-AE Cells by Using Hexoses
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The baculovirus/insect cell expression system is of great value in the study of structure-function relationships in
mammalian glucose-transport proteins by site-directed mutagenesis and for the large-scale production of these proteins
for mechanistic and biochemical studies. Spodoptera frugiperda Clone 21 (Sf21) cells grow well on TC-100 medium
that contains 0.1% D-glucose as the major carbon source, strongly suggesting the presence of endogenous glucose
transporters. However, very little is known about the properties of the endogenous sugar transporter(s) in Sf21 cells,
although a saturable transport system for hexose uptake has been previously revealed in the Sf cells. In order to further
examine the substrate and inhibitor recognition properties of the Sf21 cell transporter, the ability of hexoses to inhibit
2-deoxy-D-glucose (2dGlc) transport was investigated by measuring inhibition constants (K;). The X; 's for reversible
inhibitors were determined from plots of uptake versus inhibitor concentration. Transport was effectively inhibited by
D-mannose and D-glucose. Of the hexoses tested, L-glucose had the least effect on 2dGle transport in the Sf21 cells,
indicating that the transport is stereoselective. Unlike the human HepG?2 type glucose transport system, D-mannose had
a somewhat greater affinity for the Sf21 cell transporter than D-glucose, implying that the hydroxyl group at the C-2
position is not necessary for strong binding. However, epimerization at the C-4 position of D-glucose (D-galactose)
resulted in a dramatic decrease in affinity of the hexose for the Sf21 cell transporter. Such a lowering of affinity might
be the result of the involvement of the C-4 hydroxyl in hydrogen bonding. It is therefore suggested that Sf21 cells were
found to contain an endogenous sugar transport activity that in several aspects resembles the human HepG2 type
glucose transporter, although the insect and human transporters do differ in their affinity for cytochalasin B.
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3l o] FJ R} (Bell et al., 1993; Vannucci et al., 1997). GLUT1
9] F&9} 75 AHAAE AT FRTEE A7, A
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Hw A B2 oko] hildo] g} o]5d AEThd 3
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T FAEA RS o]8dte] Be &L At
=HEo] FEE JAHI glon, I &2 E
coli (Sarkar et al., 1988; Thorens et al., 1988), Xenopus oocytes
(Gould and Lienhard, 1989; Keller et al., 1989), mammalian cells
(Asano et al., 1989; Gould et al., 1989; Harrison et al., 1990),
transgenic mice (Liu et al., 1992) 5& ©]&3F o]z g
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baculovirus®} ZHAHEZE 0] 83 GLUTI ©@¥d 2d 3
o] om, A= ¢ R ATk (Yi et al., 1992; Cope
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Sf21 AEE 27~28CelA CO,Q00] Mjokahalt). wlore
Summers®} Smith (1987)&] #'H-S- ¥W&3le] TC-100 medium

(Gibeo)ell 10% FCS, 1% of antibiotics (penicillin 5,000 units/ml
+ streptomycin 5,000 pug/ml, Gibco-BRLYE 713+ &A1 #l %]
E Aot ZEAEL] AL 5382 0.1 ml trypan blue
(0.4% stock, pH 3.00Z 1 ml AlEol| Hr}sted dnlA oA
st o]g3igich
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9k 2o o widd sf21 AEE F 4~5Y F
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727} e AFR o2 ATk I F protease inhibitors (2
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pepstatin A (10 gm)E< FHfrshe T4 (10 mM-Tris/5 mM
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3. Hexose transport-assay

Hexose transport assay= %ol B33 ule} Zro] A5
o} (Lee, 2005). Z+eFs] AH3hd 1 ml AXE @Y (1x10°
cells/ml PBS)E 6,000 X golA 15% F<tk 94 E&sdhed
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FaLI Tt Transportol] AF8-2 tritiated sugarsE-2 2-(1,2-°H)-
deoxy-D-glucose (30.2 Ci/mmol, 2dGlc)e} L-{1-*H(N)]-glucose
(10.7 Ci/mmol, NENYZIth. Sf21 AIE2) 2dGle uptake =4S
&A= 54 A F 9 phosphate-buffered saline (PBS, 10
mM sodium phosphate, 150 mM NaCl, pH 7.4)0. 2 T-ZA|ELE
Aof wjgd ol HFE EEFE AL Had v 7}
2| dgoll BA3ITI7E AMS3ISIT Transperts AF & &
= 1mM 57] $130] 1 pCi tritiated sugarE E-3k= 2.5 mM
2dGle 100 piE H7FIEA A= AT 28T olA 187F vl
2 7333 glucose transport AHAIQ] 10 uM cytochalasin B}
0.1 mM phloreting 3 d-Fol XA ¢ 1 ml PBSE #7}
Shar 2,000 X goll A 2037 YA E2)5ke] transport assayS
Eulgivh AZEL 99 22 Eo g F W o AHsk
10% SDS 200 widll vortexing3te] £3813}3it). npx|gto 2
150 ple] 8319 AIEE Microman pipette2 ©]-8319 4 ml2]
scintillant &0} =71 £7]o Y11 liquid scintillation counter
(Bookman LS 5,000 CE)E ©|-&3}o] #AlsE AT
B AAE2 A M A9 (FTEY 10% o5k zfo])
Hdge =z BA3

4. Cytochalasin B binding assay

Sf21 AlEo) HAI8h= glucose transporterS 13} functional
assayZ4] cytochalasin B bindingS &3tk Zoccoli 52
el wek (1978) BHFAY (equilibrium dialysis) 0.2 &
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Fig. 1. Time course of 2-deoxy-D-glucose uptake by Sf21 cells
from a high extracellular concentration of sugar. Transport was
carried out in the presence of 10 mM 2dGle, as described in the
Materials and methods. After the times indicated, uptake was
terminated and the radioactivity accumulated was determined by
scintillation counting. Each data point on the graph represents the
mean of triplicate estimations. The data was corrected for the zero
time uptake and converted into pmol/min/10° cells.
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Fig. 2. Effect of D-mannose on 2-deoxy-D-glucose transport.
Transport assay was carried out essentially as described in Mate-
rials and Methods. Transport was initiated by the addition of 100
ul of PBS buffer containing [*H) 2dGlc and an appropriate con-
centration of D-mannose. After 1 min, the transport was terminated
by addition of ice-cold stop solution. Cells were then solubilized
and radioactivity was determined as described in Materials and
Methods. The data were analyzed with the help of a non-linear
regression program. The curve represents the best-fit of the data to
equation 1. Each data point represents the mean of triplicates.
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(K. = 1.43£025 mM)s} 1 5=3H930} (Fig, 3). T2} sf21 3
T4 A9 D-galactosell tgh apparent affinity (K;=23.7£5.2
mM)= F43 AE 2SI (Fig. 4). ¥HH ) L-glucose
= Sf210l WAsl= F5EA9l 2dGle transportell o3 A]
7V HE QTS (K =49.51£0.27 mM) JERIRATH (Fig. 5).

3. Cytochalasin B binding to Sf21 cell membranes

Cytochalasin BE Al A8 F3E J4EAd K, oF 0.12
M= Z3se AEHE JAAlelt} (Baldwin et al, 1982).
Bound cytochalasin Bol] ™3 Free cytochalasin BS] H]& (B/F)
< AESE ZYo] Y& FrdH 55 A 22 F=ot
= = 9Jv} (Gorga and Lienhard, 1981; Baldwin et al,, 1982). @}
2H4 Zoccoli 5 (1978)8] HHAEA WP (equilibrium dialysis)
< o] 43le] FE 40 nM9] [4-°H] cytochalasin BE AH8-3}9]
3R 24319} Table 10 20FH Blo} 7ho) $f21 Aol
& cytochalasin B A% 42 1 mgml A& F 0.0019]
Aot GLUTIS 2ds diEzFoA = 1.0282 ekt
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Fig. 3. Effect of D-glucose on 2-deoxy-D-glucose transport.
Transport assay was carried out essentially as described in Mate-
rials and Methods. The ability of D-glucose to inhibit the uptake
of 2dGlc was determined as described in the legend to Fig. 2. The
curve represents the best fit of the data to equation 1. Each data
point is the mean of triplicate estimations.
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Fig. 4. Effect of D-galactose on the initial rate of 2-deoxy-
D-glucose uptake. Transport assay was carried out essentially as
described in Materials and Methods. The ability of D-galactose to
inhibit the uptake of 2dGlc was determined as described in the
legend to Fig. 2. The curve represents the best fit of the data to
equation 1. Each data point is the mean of triplicate estimation.
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Fig. 5. Effect of L-glucose on 2-deoxy-D-glucose transport.
Transport assay was cartied out essentially as described in Mate-
rials and Methods. The ability of L-glucose to inhibit the uptake
of 2dGlc was determined as described in the legend to Fig. 2. The
curve represents the best fit of the data to equation 1. Each data
point is the mean of triplicate estimations.

Table 1. Cytochalasin B binding to Sf21 cell membranes
Cytochalasin B (B/F)

(-) D-glucose

Sample (1 mg/ml) (+) D-glucose *Specific B/F
S£21 cell membranes 0.052 0.051 0.001
S£21 cell membranes with recombinant virus A 1.188 0.160 1.028

Membranes of Sf21 cells were prepared as described in the Materials and Methods. The assay for cytochalasin B binding activity of
membrane samples was performed by equilibrium dialysis using 40 nM-[*H]cytochalasin B, in the absence (-) or presence (+) of 400
mM D-glucose, as described in Zoccoli et al., (1978). Cytochalasin B binding activity (*) was calculated as described previously (Gorga
and Lienhard, 1981). B/F = [bound cytochalasin B]/ [free cytochalasin B]. A\ : Preparation from the Sf21 cells infected with the recom-
binant baculovirus containing GLUT1 gene (AcNPV-GT).
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