• Title/Summary/Keyword: Input-output Efficiency

Search Result 1,257, Processing Time 0.027 seconds

A Selection Process of Input and Output Factors Using Partial Efficiency in DEA (부분 효율성 정보를 이용한 DEA 모형의 투입.산출 요소 선정에 관한 연구)

  • 민재형;김진한
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.23 no.3
    • /
    • pp.75-90
    • /
    • 1998
  • The improper use of input and output factors in DEA has a critical and negative impact on the efficiency measurement and the discernment of decision making units(DMUs) : hence the proper selection Process of the factors should precede the actual applications of DEA. In this paper, we propose a new approach to selecting proper factors based on Tofallis' partial efficiency evaluation method(1996). With the approach, the factors aye clustered by measuring their respective partial efficiencies and analyzing the rank correlations of them. The method and procedure we propose in this paper are then applied to measure the efficiencies of the public libraries in Seoul District area, and the results show that the proposed approach can provide meaningful information to improve discernment of the DMUs while using less number of input factors (and less information). The proposed method can be effectively used in the situation where the number of the DMUs to be considered is relatively small compared to the number of available input and output factors, which usually lessens the power to identify the inefficient units in DEA.

  • PDF

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.

Buck+Half Bridge Converter efficiency characteristics (벅+하프 브리지 컨버터에서 벅 컨버터의 출력 인덕턴스 감과 스위칭 주파수, 변압기 코어 형태에 따른 효율 특성)

  • Park N.J.;Kim C.S.;Kim T.S.;Im B.S.;Woo S.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.62-65
    • /
    • 2003
  • We considered of the efficiency for the Buck+Half bridge converter This converter has advantages of applications for a low output voltage, a high output current and a wide input voltage. Developed the Buck converter ratings and the Half Bridge converter ratings are 36$\~$72V Input and 22V/5A output, 19$\~$24v input and 3.3V/30A output, respectively. Buck converter is operated with zero voltage switching process to reduce the switching losses. The 80.1 $\~$97.6$\%$ of the efficiency is measured at 18.4 $\mu$H output filter inductance of Buck convertor. In Half Bridge convertor, the 86$\~$96.4$\%$ of the efficiency is measured at 100kHz switching frequency with PQI core.

  • PDF

Considerations of Buck+Half Bridge Converter characteristics (벅+하프 브리지 컨버터의 효율 특성 고찰)

  • Park, Nam-Jin;Kim, Chang-Sun;Kim, Tea-Sic;Im, Bum-Sun;Woo, Seung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1229-1231
    • /
    • 2003
  • We considered of the efficiency for the Buck+Half bridge converter, this converter has advantages of applications for a low output voltage, a high output current and a wide input voltage. Developed the Buck+Half Bridge converter ratings are of $36{\sim}72V$ input and 3.3V/30A output. In Half Bridge converter the $86{\sim}96.4%$ of the efficiency is measured at 100kHz switching frequency with PQI core. In the case of synchronized the Buck+Half Bridge converter, the measured efficiency is higher than the unsynchronized converter. In the synchronized Buck+Half Bridge, the maximum efficiency is up to 92.3% with PQI core at 100kHz, 7A output.

  • PDF

Input-Series-Output-Parallel Connected DC/DC Converter for a Photovoltaic PCS with High Efficiency under a Wide Load Range

  • Lee, Jong-Pil;Min, Byung-Duk;Kim, Tae-Jin;Yoo, Dong-Wook;Yoo, Ji-Yoon
    • Journal of Power Electronics
    • /
    • v.10 no.1
    • /
    • pp.9-13
    • /
    • 2010
  • This paper proposes an input-series-output-parallel connected ZVS full bridge converter with interleaved control for photovoltaic power conditioning systems (PV PCS). The input-series connection enables a fully modular power-system architecture, where low voltage and standard power modules can be connected in any combination at the input and/or at the output, to realize any given specifications. Further, the input-series connection enables the use of low-voltage MOSFETs that are optimized for a very low RDSON, thus, resulting in lower conduction losses. The system costs decrease due to the reduced current, and the volumes of the output filters due to the interleaving technique. A topology for a photovoltaic (PV) dc/dc converter that can dramatically reduce the power rating and increase the efficiency of a PV system by analyzing the PV module characteristics is proposed. The control scheme, consisting of an output voltage loop, a current loop and input voltage balancing loops, is proposed to achieve input voltage sharing and output current sharing. The total PV system is implemented for a 10-kW PV power conditioning system (PCS). This system has a dc/dc converter with a 3.6-kW power rating. It is only one-third of the total PV PCS power. A 3.6-kW prototype PV dc/dc converter is introduced to experimentally verify the proposed topology. In addition, experimental results show that the proposed topology exhibits good performance.

Energy-Efficiency and Transmission Strategy Selection in Cooperative Wireless Sensor Networks

  • Zhang, Yanbing;Dai, Huaiyu
    • Journal of Communications and Networks
    • /
    • v.9 no.4
    • /
    • pp.473-481
    • /
    • 2007
  • Energy efficiency is one of the most critical concerns for wireless sensor networks. By allowing sensor nodes in close proximity to cooperate in transmission to form a virtual multiple-input multiple-output(MIMO) system, recent progress in wireless MIMO communications can be exploited to boost the system throughput, or equivalently reduce the energy consumption for the same throughput and BER target. However, these cooperative transmission strategies may incur additional energy cost and system overhead. In this paper, assuming that data collectors are equipped with antenna arrays and superior processing capability, energy efficiency of relevant traditional and cooperative transmission strategies: Single-input-multiple-output(SIMO), space-time block coding(STBC), and spatial multiplexing(SM) are studied. Analysis in the wideband regime reveals that, while receive diversity introduces significant improvement in both energy efficiency and spectral efficiency, further improvement due to the transmit diversity of STBC is limited, as opposed to the superiority of the SM scheme especially for non-trivial spectral efficiency. These observations are further confirmed in our analysis of more realistic systems with limited bandwidth, finite constellation sizes, and a target error rate. Based on this analysis, general guidelines are presented for optimal transmission strategy selection in system level and link level, aiming at minimum energy consumption while meeting different requirements. The proposed selection rules, especially those based on system-level metrics, are easy to implement for sensor applications. The framework provided here may also be readily extended to other scenarios or applications.

Analysis on Output Efficiency of Chinese Listed Port Companies Based on DEA Model

  • XU, Yan;KIM, Hyung-Ho
    • East Asian Journal of Business Economics (EAJBE)
    • /
    • v.9 no.1
    • /
    • pp.41-51
    • /
    • 2021
  • Purpose - The purpose of this study is to propose strategies of improving efficiency of 20 listed port companies in China based on analysis of their input-output indexes from 2014 to 2018. Research design, data, and methodology - In this paper, the relevant input-output indicators of 20 listed port companies in China from 2014 to 2018 were adopted. Data derived from the company annual reports announced by Shanghai stock exchange and Shenzhen stock exchange. Comprehensive efficiency and pure technical efficiency were measured from output perspective by DEA and Malmquist index, and efficiency changes and regional efficiency were analyzed. Result - The results showed that the efficiency value of 20 listed port companies in China fluctuated and increased during 2014-2018, regional efficiency was unbalanced, and change of MPI was influenced by internal factors and external factors. Listed port companies affected by internal and external factors needed to make appropriate response to internal and external factors. Conclusion - The research conclusion can provide important reference information about management and planning for port companies in China and related areas. However, this paper is limited to the availability of data. So the improvement scheme for listed companies in inefficient regional ports needs further study, such as using AHP method.

High Effciency Balanced Power Amplifier (고효율 평형 전력 증폭기)

  • 신헌철;김갑기;이창식;이종악
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.8 no.4
    • /
    • pp.323-331
    • /
    • 1997
  • In this paper, the high efficiency balanced amplifier is presented as high efficiency power amplifier. This amplifier is basically composed of two FETs, an input power divider, output power combiner, input matching circuits, output matching circuits, second harmonic interconnection circuit and lowpass filter. The second harmonic interconnection circuit is composed of second harmonic frequency bandpass filter and transmission line. This circuit is inserted between the output terminals of the two FEF's output matching circuit, there is a second harmonic standing wave generated between two FET outputs. The electric wall termination is equivalent to the short circuit termination. As a result, the FET output termination condition needed to attain high efficiency is realized. Experimental high efficiency balanced amplifier is constructed to determine its practically attainable efficiency. The input VSWR is 1.27, and the output VSWR is 1.18. Power added efficiency of 75% is attained at 1.75 GHz band about 3W to balanced amplifier.

  • PDF

Transformer-Reuse Reconfigurable Synchronous Boost Converter with 20 mV MPPT-Input, 88% Efficiency, and 37 mW Maximum Output Power

  • Im, Jong-Pil;Moon, Seung-Eon;Lyuh, Chun-Gi
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.654-664
    • /
    • 2016
  • This paper presents a transformer-based reconfigurable synchronous boost converter. The lowest maximum power point tracking (MPPT)-input voltage and peak efficiency of the proposed boost converter, 20 mV and 88%, respectively, were achieved using a reconfigurable synchronous structure, static power loss minimization design, and efficiency boost mode change (EBMC) method. The proposed reconfigurable synchronous structure for high efficiency enables both a transformer-based self-startup mode (TSM) and an inductor-based MPPT mode (IMM) with a power PMOS switch instead of a diode. In addition, a static power loss minimization design, which was developed to reduce the leakage current of the native switch and quiescent current of the control blocks, enables a low input operation voltage. Furthermore, the proposed EBMC method is able to change the TSM into IMM with no additional time or energy loss. A prototype chip was implemented using a $0.18-{\mu}m$ CMOS process, and operates within an input voltage range of 9 mV to 1 V, and an output voltage range of 1 V to 3.3 V, and provides a maximum output power of 37 mW.

A Study on Evaluating the Efficiency of the Photonics Industry in Gwangju Using a DEA Model (DEA 모형을 활용한 광주 광산업체 효율성 평가에 관한 연구)

  • Cho, Geon;Jung, Kyung-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.39 no.2
    • /
    • pp.244-255
    • /
    • 2011
  • In this study, we try to evaluate the efficiency of the photonics industry using a data envelopment analysis(DEA) model. We first develope four stage procedures for selecting proper input and output variables which consist of selecting the first candidate variables from literature survey, selecting the second candidate variables through experts' discussion, measuring the partial efficiency of the selected variables based on Tofallis' profiling, and clustering some variables through the rank correlation analysis of partial efficiency proposed by Min and Kim(l998). With this procedure, we select 4 input variables(capital, number of employee, R&D cost, operating cost) and 2 output variables(sales, growth of sales) and then utilize CCR and BCC model to measure efficiencies of 26 photonics companies in Gwangju. Moreover, we perform the reference group analysis to figure out what causes inefficiencies and to provide the desirable values for input and output variables at which inefficient photonics companies become efficient. Finally, we classify 26 photonics companies into three groups such as optical communications, optical applications, and optical sources, and perform the Kruskal-Wallis test to check if there exist some differences between efficiencies of three groups.