• 제목/요약/키워드: Input identification method

검색결과 459건 처리시간 0.026초

시스템동정의 ALS법에 관한 연구 (A Study on the ALS Method of System Identification)

  • 이동철
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.74-81
    • /
    • 2003
  • A system identification is to estimate the mathematical model on the base of input output data and to measure the output in the presence of adequate input for the controlled system. In the traditional system control field, most identification problems have been thought as estimating the unknown modeling parameters on the assumption that the model structures are fixed. In the system identification, it is possible to estimate the true parameter values by the adjusted least squares method in the input output case of no observed noise, and it is possible to estimate the true parameter values by the total least squares method in the input output case with the observed noise. We suggest the adjusted least squares method as a consistent estimation method in the system identification in the case where there is observed noise only in the output. In this paper the adjusted least squares method has been developed from the least squares method and the efficiency of the estimating results was confirmed by the generating data with the computer simulations.

  • PDF

비디오 얼굴 식별 성능개선을 위한 다중 심층합성곱신경망 결합 구조 개발 (Development of Combined Architecture of Multiple Deep Convolutional Neural Networks for Improving Video Face Identification)

  • 김경태;최재영
    • 한국멀티미디어학회논문지
    • /
    • 제22권6호
    • /
    • pp.655-664
    • /
    • 2019
  • In this paper, we propose a novel way of combining multiple deep convolutional neural network (DCNN) architectures which work well for accurate video face identification by adopting a serial combination of 3D and 2D DCNNs. The proposed method first divides an input video sequence (to be recognized) into a number of sub-video sequences. The resulting sub-video sequences are used as input to the 3D DCNN so as to obtain the class-confidence scores for a given input video sequence by considering both temporal and spatial face feature characteristics of input video sequence. The class-confidence scores obtained from corresponding sub-video sequences is combined by forming our proposed class-confidence matrix. The resulting class-confidence matrix is then used as an input for learning 2D DCNN learning which is serially linked to 3D DCNN. Finally, fine-tuned, serially combined DCNN framework is applied for recognizing the identity present in a given test video sequence. To verify the effectiveness of our proposed method, extensive and comparative experiments have been conducted to evaluate our method on COX face databases with their standard face identification protocols. Experimental results showed that our method can achieve better or comparable identification rate compared to other state-of-the-art video FR methods.

ALS법에 의한 시스템동정 (System Identification by Adjusted Least Squares Method)

  • 이동철;배종일;정형환;조봉관
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2216-2218
    • /
    • 2002
  • A system identification is to measure the output in the presence of a adequate input for the controlled system and to estimate the mathematical model in the basic of input output data. In the system identification, it is possible to estimate the true parameter values by the adjusted least squares method in the input-output case of no observed noise, and it is possible to estimate the true parameter values by the total least squares method in the input-output case with the observed noise. In recent the adjusted least squares method is suggested as a consistent estimation method in the system identification not with the observed noise input but with the observed noise output. In this paper we have developed the adjusted least squares method from the least squares method and have made certain of the efficiency in comparing the estimating results with the generating data by the computer simulations.

  • PDF

퍼지모델의 새로운 설정 방법 (A New Identification Method for a Fuzzy Model)

  • 박민기;지승환;박민용
    • 한국지능시스템학회논문지
    • /
    • 제5권2호
    • /
    • pp.70-78
    • /
    • 1995
  • 입출력 데이터를 이용한 퍼지모델의 설정은 구조 설정과 변수 설정으로 나누어진다. 본 논문에서는 기존 방법의 문제점을 해결하고 퍼지모델의 이러한 구조와 변수를 설정하는 새로운 방법을 제안한다. 입출력 데이터가 주어지면, 후건부 변수는 선형성과연속성을 고려하여 휴(Hough) 변환과클러스터링 방법에 의해 각각 설정된다. 또한 경사 하강법(Gradient descent method)을 사용하여 퍼지모델 변수의 미세조정을 행한다. 마지막으로 단일 입출력 시스템에 대하여 시뮬레이션을 통해 제안된 방법의 유효성을 보인다.

  • PDF

State-space formulation for simultaneous identification of both damage and input force from response sensitivity

  • Lu, Z.R.;Huang, M.;Liu, J.K.
    • Smart Structures and Systems
    • /
    • 제8권2호
    • /
    • pp.157-172
    • /
    • 2011
  • A new method for both local damage(s) identification and input excitation force identification of beam structures is presented using the dynamic response sensitivity-based finite element model updating method. The state-space approach is used to calculate both the structural dynamic responses and the responses sensitivities with respect to structural physical parameters such as elemental flexural rigidity and with respect to the force parameters as well. The sensitivities of displacement and acceleration responses with respect to structural physical parameters are calculated in time domain and compared to those by using Newmark method in the forward analysis. In the inverse analysis, both the input excitation force and the local damage are identified from only several acceleration measurements. Local damages and the input excitation force are identified in a gradient-based model updating method based on dynamic response sensitivity. Both computation simulations and the laboratory work illustrate the effectiveness and robustness of the proposed method.

Random loading identification of multi-input-multi-output structure

  • Zhi, Hao;Lin, Jiahao
    • Structural Engineering and Mechanics
    • /
    • 제10권4호
    • /
    • pp.359-369
    • /
    • 2000
  • Random loading identification has long been a difficult problem for Multi-Input-Multi-Output (MIMO) structure. In this paper, the Pseudo Excitation Method (PEM), which is an exact and efficient method for computing the structural random response, is extended inversely to identify the excitation power spectral densities (PSD). This identified method, named the Inverse Pseudo Excitation Method (IPEM), resembles the general dynamic loading identification in the frequency domain, and can be used to identify the definite or random excitations of complex structures in a similar way. Numerical simulations are used to reveal the the difficulties in such problems, and the results of some numerical analysis are discussed, which may be very useful in the setting up and processing of experimental data so as to obtain reasonable predictions of the input loading from the selected structural responses.

입력 공간 분할에 따른 뉴로-퍼지 시스템과 응용 (Neuro-Fuzzy System and Its Application by Input Space Partition Methods)

  • 곽근창;유정웅
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1998년도 추계학술대회 학술발표 논문집
    • /
    • pp.433-439
    • /
    • 1998
  • In this paper, we present an approach to the structure identification based on the input space partition methods and to the parameter identification by hybrid learning method in neuro-fuzzy system. The structure identification can automatically estimate the number of membership function and fuzzy rule using grid partition, tree partition, scatter partition from numerical input-output data. And then the parameter identification is carried out by the hybrid learning scheme using back-propagation and least squares estimate. Finally, we sill show its usefulness for neuro-fuzzy modeling to truck backer-upper control.

  • PDF

모드필터방법에 의한 간접적 입력규명 (Indirect Input Identification by Modal Filter Technique)

  • 김영렬;김광준
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.377-386
    • /
    • 1999
  • This paper is a study on model method for estimating system inputs from vibration responses, which is one of indirect input identification methods in frequency domain. The method has advantages over direct inverse method especially when points of operational inputs are inaccessible so that artificial excitation forces cannot be applied to obtain frequency response functions of the complete system. Procedures of extended modal model method are proposed and checked by numerical experiment. Mechanisms of error propagation, i.e., how errors in modal parameters such as poles nad mode shape vectors affect estimation of the input forces, are illustrated. Then, in order to counteract the error propagation, discrete modal filter approach is taken in this paper to compute the inversion of modal matrix in which the most serious errors seem to be generated. Further, a Reduced form of Modified Reciprocal Modal Vector(RMRMV) is proposed for estimating multiple inputs. It is shown to have smaller orthogonality error than MRMV.

  • PDF

소각 프린트의 증기발생 및 배기가스에 대한 파라메트릭 ARX 모델규명 (Identification of a Parametric ARX Model of a Steam Generation and Exhaust Gases for Refuse Incineration Plants)

  • 황이철
    • 제어로봇시스템학회논문지
    • /
    • 제8권7호
    • /
    • pp.556-562
    • /
    • 2002
  • This paper studies the identification of a combustion model, which is used to design a linear controller of a steam generation quantity and harmful exhaust gases of a Refuse Incineration Plant(RIP). Even though the RIP has strong nonlinearities and complexities, it is identified as a MIMO parametric ARX model from experimental input-output data sets. Unknown model parameters are decided from experimental input-output data sets, using system identification algorithm based on Instrumental Variables(IV) method. It is shown that the identified model well approximates the input-output combustion characteristics.

Identification of continuous time-delay systems using the genetic algorithm

  • Hachino, Tomohiro;Yang, Zi-Jiang;Tsuji, Teruo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1-6
    • /
    • 1993
  • This report proposes a novel method of identification of continuous time-delay systems from sampled input-output data. By the aid of a digital pre-filter, an approximated discrete-time estimation model is first derived, in which the system parameters remain in their original form and the time delay need not be an integral multiple of th sampling period. Then an identification method combining the common linear least squares(LS) method or the instrumental variable(IV) method with the genetic algorithm(GA) is proposed. That is, the time-delay is selected by the GA, and the system parameters are estimated by the LS or IV method. Furthermore, the proposed method is extended to the case of multi-input multi-output systems where the time-delays in the individual input channels may differ each other. Simulation resutls show that our method yields consistent estimates even in the presence of high measurement noises.

  • PDF