• Title/Summary/Keyword: Input and Output Parameters

Search Result 889, Processing Time 0.032 seconds

Extension of the NEAMS workbench to parallel sensitivity and uncertainty analysis of thermal hydraulic parameters using Dakota and Nek5000

  • Delchini, Marc-Olivier G.;Swiler, Laura P.;Lefebvre, Robert A.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3449-3459
    • /
    • 2021
  • With the increasing availability of high-performance computing (HPC) platforms, uncertainty quantification (UQ) and sensitivity analyses (SA) can be efficiently leveraged to optimize design parameters of complex engineering problems using modeling and simulation tools. The workflow involved in such studies heavily relies on HPC resources and hence requires pre-processing and post-processing capabilities of large amounts of data along with remote submission capabilities. The NEAMS Workbench addresses all aspects of the workflows involved in these studies by relying on a user-friendly graphical user interface and a python application program interface. This paper highlights the NEAMS Workbench capabilities by presenting a semiautomated coupling scheme between Dakota and any given package integrated with the NEAMS Workbench, yielding a simplified workflow for users. This new capability is demonstrated by running a SA of a turbulent flow in a pipe using the open-source Nek5000 CFD code. A total of 54 jobs were run on a HPC platform using the remote capabilities of the NEAMS Workbench. The results demonstrate that the semiautomated coupling scheme involving Dakota can be efficiently used for UQ and SA while keeping scripting tasks to a minimum for users. All input and output files used in this work are available in https://code.ornl.gov/neams-workbench/dakota-nek5000-study.

On a Modified Structure of Taper Type Planar Power Divider/Combiner at 2 GHz (2 GHz 평면 테이퍼형 전력 분배/결합회로의 수정된 구조 연구)

  • 한용인;김인석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.10
    • /
    • pp.1005-1016
    • /
    • 2002
  • In this paper, a 2 GHz tapered shape of multiport power divider/combiner modified from the model published by [10] and adopted PBG(Photonic Band Gap) structure is proposed. Parameters determining electrical property of the circuit structure have been analyzed by HFSS simulation. For input matching, balance of output signals and phase linearity at each output port, one circular hole has been etched out on the circuit surface. 1:2 and 1:3 power dividers/combiners designed by this study have been compared with the same circuits designed by the method of [10] in terms of S-parameters. As a result, it has been found that tile modified structure and PBG of power divider/combiner have improved return loss more than 20 dB and another 18 dB. respectively, at 2 GHz.

Estimation of Antenna Correlation Coefficient of N-Port Lossy MIMO Array

  • Saputro, Susilo Ady;Nandiwardhana, Satya;Chung, Jae-Young
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.303-308
    • /
    • 2018
  • This paper proposes a simple yet accurate method for estimating the antenna correlation coefficient (ACC) of a high-order multiple-input multiple-output (MIMO) antenna. The conventional method employed to obtain the ACC from three-dimensional radiation patterns is costly and difficult to measure. An alternate method is to use the S-parameters, which can be easily measured using a network analyzer. However, this method assumes that the antennas are highly efficient, and it is therefore not suitable for lossy MIMO antenna arrays. To overcome this limitation, we define and utilize the non-coupled radiation efficiency in the S-parameter-based ACC formula. The accuracy of the proposed method is verified by the simulation results of a 4-port highly coupled lossy MIMO array. Further, the proposed method can be applied to N-port arrays by expanding the calculation matrix.

Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine

  • Khatibinia, Mohsen;Feizbakhsh, Abdosattar;Mohseni, Ehsan;Ranjbar, Malek Mohammad
    • Computers and Concrete
    • /
    • v.18 no.6
    • /
    • pp.1065-1082
    • /
    • 2016
  • The main aim of this study is to predict the compressive and flexural strengths of self-compacting mortar (SCM) containing $nano-SiO_2$, $nano-Fe_2O_3$ and nano-CuO using wavelet-based weighted least squares-support vector machines (WLS-SVM) approach which is called WWLS-SVM. The WWLS-SVM regression model is a relatively new metamodel has been successfully introduced as an excellent machine learning algorithm to engineering problems and has yielded encouraging results. In order to achieve the aim of this study, first, the WLS-SVM and WWLS-SVM models are developed based on a database. In the database, nine variables which consist of cement, sand, NS, NF, NC, superplasticizer dosage, slump flow diameter and V-funnel flow time are considered as the input parameters of the models. The compressive and flexural strengths of SCM are also chosen as the output parameters of the models. Finally, a statistical analysis is performed to demonstrate the generality performance of the models for predicting the compressive and flexural strengths. The numerical results show that both of these metamodels have good performance in the desirable accuracy and applicability. Furthermore, by adopting these predicting metamodels, the considerable cost and time-consuming laboratory tests can be eliminated.

A Non-Stationary Geometry-Based Cooperative Scattering Channel Model for MIMO Vehicle-to-Vehicle Communication Systems

  • Qiu, Bin;Xiao, Hailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.2838-2858
    • /
    • 2019
  • Traditional channel models for vehicle-to-vehicle (V2V) communication usually assume fixed velocity in static scattering environment. In the realistic scenarios, however, time-variant velocity for V2V results in non-stationary statistical properties of wireless channels. Dynamic scatterers with random velocities and directions have been always utilized to depict the non-stationary statistical properties of the channel. In this paper, a non-stationary geometry-based cooperative scattering channel model is proposed for multiple-input multiple-output (MIMO) V2V communication systems, where a birth-death process is used to capture the appearance and disappearance dynamic properties of moving scatterers that reflect the time-variant time correlation and Doppler spectrum characteristics. Moreover, our model has more straight and concise to study the impact of the vehicular traffic density on channel characteristics and thus avoid complicated procedure in deriving the analytical expressions of the channel parameters and functions. The numerical results validate our analysis and demonstrate that setting important parameters of our model can appropriately build up more purposeful measurement campaigns in the future.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.

A Study on the Development of Gap filler Isolator by using the YIG Ferrite (YIG Ferrite를 이용한 Gap Filter용 아이솔레이터 개발에 관한 연구)

  • Jung, Seung-Woo;Choi, U-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.8
    • /
    • pp.759-765
    • /
    • 2005
  • In this paper, developed isolator for gap filler is analyzed and designed using the simulation tool. Using the designed parameters, isolator is fabricated and tested in gap filler band. Temperature characteristics of isolator depend on magnet, YIG ferrite, and conductor etc. These require temperature stability and possible method of compensation for the temperature dependent effects. The temperature stabilization tries to use Ni-alloy. Developed isolator that compare with room temperature and high temperature characteristics has change fewer than 20 MHz. Implemented isolator shows more than 20 dB isolation characteristic at center frequency(2,650 MHz) and has 0.2 dB insertion loss in overall 100 MHz operating bandwidth. Return losses of input and output port are measured below -20 dB.

Predicting the compressive strength of cement mortars containing FA and SF by MLPNN

  • Kocak, Yilmaz;Gulbandilar, Eyyup;Akcay, Muammer
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.759-770
    • /
    • 2015
  • In this study, a multi-layer perceptron neural network (MLPNN) prediction model for compressive strength of the cement mortars has been developed. For purpose of constructing this model, 8 different mixes with 240 specimens of the 2, 7, 28, 56 and 90 days compressive strength experimental results of cement mortars containing fly ash (FA), silica fume (SF) and FA+SF used in training and testing for MLPNN system was gathered from the standard cement tests. The data used in the MLPNN model are arranged in a format of four input parameters that cover the FA, SF, FA+SF and age of samples and an output parameter which is compressive strength of cement mortars. In the model, the training and testing results have shown that MLPNN system has strong potential as a feasible tool for predicting 2, 7, 28, 56 and 90 days compressive strength of cement mortars.

The Optimization of Fuzzy Controller Parameter using Genetic Algorithm (유전 알고리즘을 이용한 퍼지 제어기 파라미터의 최적화)

  • 이승형;정성부;최용준;이승현;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.355-360
    • /
    • 1999
  • In this paper, we propose a method that optimizes the parameters of fuzzy logic controller : centers and widths of membership functions and scaling factors using genetic algorithm. Before fuzzy logic controller controls a plant in real time, first off it is optimized by genetic algorithm. We select error and error variation between reference trajectory and real output for the input signals of fuzzy controller. We compared and investigated conventional fuzzy control method and proposed method through simulation and experiment using one link manipulator with nonlinear characteristic.

  • PDF

Development of a 2-DOF Robot System for Harvesting a Lettuce (2 자유도 상추 수확 로봇 시스템 개발)

  • 조성인;장성주;류관희;남기찬
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2000
  • In Korea, researches for year-round leaf vegetables production system are in progress and the most of them are focused on environment control. Automation technologies for harvesting , transporting and grading need to be developed. This study was conducted to develop harvesting process automation system profitable to a competitive price. 1. Manipulator and end-effector are to be designed and fabricated , and fuzzy logic controller for controlling these are to be composed. 2. The entire system constructed is to be evaluated through a performance test. A robot system for harvesting a lettuce was developed. It was composed of a manipulator with 20DOF (degrees of freedom) an end-effector, a lettuce feeding conveyor , an air blower , a machine vision device, 6 photoelectric sensors and a fuzzy logic controller. A fuzzy logic control was applied to determined appropriate grip force on lettuce. Leaf area index and height index were used as input parameters, and voltage was used as output parameter for the fuzzy logic controller . Success rate of the lettuce harvesting system was 93.06% , and average harvesting time was about 5 seconds per lettuce.

  • PDF