• Title/Summary/Keyword: Input and Output Parameters

Search Result 889, Processing Time 0.046 seconds

DIRECT INVERSE ROBOT CALIBRATION USING CMLAN (CEREBELLAR MODEL LINEAR ASSOCIATOR NET)

  • Choi, D.Y.;Hwang, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1173-1177
    • /
    • 1990
  • Cerebellar Model Linear Associator Net(CMLAN), a kind of neuro-net based adaptive control function generator, was applied to the problem of direct inverse calibration of three and six d.o.f. POMA 560 robot. Since CMLAN autonomously maps and generalizes a desired system function via learning on the sampled input/output pair nodes, CMLAN allows no knowledge in system modeling and other error sources. The CMLAN based direct inverse calibration avoids the complex procedure of identifying various system parameters such as geometric(kinematic) or nongeometric(dynamic) ones and generates the corresponding desired compensated joint commands directly to each joint for given target commands in the world coordinate. The generated net outputs automatically handles the effect of unknown system parameters and dynamic error sources. On-line sequential learning on the prespecified sampled nodes requires only the measurement of the corresponding tool tip locations for three d.o.f. manipulator but location and orientation for six d.o.f. manipulator. The proposed calibration procedure can be applied to any robot.

  • PDF

A study on pattern recognition using DCT and neural network (DCT와 신경회로망을 이용한 패턴인식에 관한 연구)

  • 이명길;이주신
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.3
    • /
    • pp.481-492
    • /
    • 1997
  • This paper presents an algorithm for recognizing surface mount device(SMD) IC pattern based on the error back propoagation(EBP) neural network and discrete cosine transform(DCT). In this approach, we chose such parameters as frequency, angle, translation and amplitude for the shape informantion of SMD IC, which are calculated from the coefficient matrix of DCT. These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Learning of EBP neural network is carried out until maximum error of the output layer is less then 0.020 and consequently, after the learning of forty thousand times, the maximum error have got to this value. Experimental results show that the rate of recognition is 100% in case of the random pattern taken at a similar circumstance as well as normalized training pattern. It also show that proposed method is not only relatively relatively simple compare with the traditional space domain method in extracting the feature parameter but also able to re recognize the pattern's class, position, and existence.

  • PDF

A Study on the Diagnosis of Appendicitis using Fuzzy Neural Network (퍼지 신경망을 이용한 맹장염진단에 관한 연구)

  • 박인규;신승중;정광호
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.253-257
    • /
    • 2000
  • the objective of this study is to design and evaluate a methodology for diagnosing the appendicitis in a fuzzy neural network that integrates the partition of input space by fuzzy entropy and the generation of fuzzy control rules and learning algorithm. In particular the diagnosis of appendicitis depends on the rule of thumb of the experts such that it associates with the region, the characteristics, the degree of the ache and the potential symptoms. In this scheme the basic idea is to realize the fuzzy rle base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by back propagation learning rule. To eliminate the number of the parameters of the rules, the output of the consequences of the control rules is expressed by the network's connection weights. As a result we obtain a method for reducing the system's complexities. Through computer simulations the effectiveness of the proposed strategy is verified for the diagnosis of appendicitis.

  • PDF

Derivation of Recursive Relations in Markov Parameter for the Closed-Loop Identification

  • Lee, Hyun-Chang;Byun, Hyung-Gi;Kim, Jeong-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.335-339
    • /
    • 1998
  • This paper presents a closed loop identification algorithm in time domain. This algorithm can be used for identification of unstable system and for model validation of system which is difficult to derive analytical model. In time domain, projection filter, which projects a finite number of input output data of a system into its current space, is used to relate the state space model with a finite difference model. Then recursive relations between the Markov parameters and the ARX model coefficients are derived to identify the system, controller and Kalman filter Markov parameters recursively, which are finally used to identify the system, controller and Kalman filter gains. The NASA LAMSTF is used to validate the algorithms developed.

  • PDF

Self-Organizing Fuzzy Modeling Based on Hyperplane-Shaped Clusters (다차원 평면 클러스터를 이용한 자기 구성 퍼지 모델링)

  • Koh, Taek-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.985-992
    • /
    • 2001
  • This paper proposes a self-organizing fuzzy modeling(SOFUM)which an create a new hyperplane shaped cluster and adjust parameters of the fuzzy model in repetition. The suggested algorithm SOFUM is composed of four steps: coarse tuning. fine tuning cluster creation and optimization of learning rates. In the coarse tuning fuzzy C-regression model(FCRM) clustering and weighted recursive least squared (WRLS) algorithm are used and in the fine tuning gradient descent algorithm is used to adjust parameters of the fuzzy model precisely. In the cluster creation, a new hyperplane shaped cluster is created by applying multiple regression to input/output data with relatively large fuzzy entropy based on parameter tunings of fuzzy model. And learning rates are optimized by utilizing meiosis-genetic algorithm in the optimization of learning rates To check the effectiveness of the suggested algorithm two examples are examined and the performance of the identified fuzzy model is demonstrated via computer simulation.

  • PDF

Real-Time Multiple-Parameter Tuning of PPF Controllers for Smart Structures by Genetic Algorithms (유전자 알고리듬을 이용한 지능구조물의 PPF 제어기 실시간 다중변수 조정)

  • Heo, Seok;Kwak, Moon-Kyu
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 2001
  • This paper is concerned with the real-time automatic tuning of the multi-input multi-output positive position feedback controllers for smart structures by the genetic algorithms. The genetic algorithms have proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The previous real-time algorithm that tunes a single control parameter is extended to tune more parameters of the MIMO PPF controller. We employ the MIMO PPF controller since it can enhance the damping value of a target mode without affecting other modes if tuned properly. Hence, the traditional positive position feedback controller can be used in adaptive fashion in real time. The final form of the MIMO PPF controller results in the centralized control, thus it involves many parameters. The bounds of the control Parameters are estimated from the theoretical model to guarantee the stability. As in the previous research, the digital MIMO PPF control law is downloaded to the DSP chip and a main program, which runs genetic algorithms in real time, updates the parameters of the controller in real time. The experimental frequency response results show that the MIMO PPF controller tuned by GA gives better performance than the theoretically designed PPF. The time response also shows that the GA tuned MIMO PPF controller can suppress vibrations very well.

  • PDF

A Study on Machine Learning Algorithm for Intelligent Information Retrieval in World Wide Web (WWW상의 지능형 정보검색을 위한 기계학습 알고리즘 구현에 관한 연구)

  • 김성희
    • Journal of the Korean Society for information Management
    • /
    • v.17 no.2
    • /
    • pp.189-205
    • /
    • 2000
  • We investigate the appropriate design and implementation of an Inductive Learning Alogrithm with a Neural Network in order to solve both inconsistent indexing and incomplete query problems on the web. Specifically, the proposed system based queries and documents in the field of Mathematics shows how inductive learning method and neural networks can apply to information retreival. Also, this study examines all of parameters of the neural networks -- the number of node in input and output, hidden layer size and learning parameters etc. -- which are significant in determining how well the neural network will converge.

  • PDF

Design and application of self tuning fuzzy PI controller (자기동조 퍼지 PI 제어기의 설계와 응용)

  • 이성주;오성권;남의석;황희수;이석진;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.238-242
    • /
    • 1991
  • This paper presents an approach to self-tuning PI control of dynamic plants, based on fuzzy logic application. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a fuzzy logic controller, one of the most difficult problem is the selection of linguistic control rules and parameters. To overcome this difficulty, self-tuning fuzzy PI controller (STFPIC) with a hierarchical structure in which the fuzzy PI controller is assigned as the lower level and the rule modification and parameter adjustment as the higher level. The rules and parameters are generated by the adjustment of membership function through performance index(PE). In this paper, the algorithm for of the controller performance is estimated by means of computer simulation.

  • PDF

A study on the modeling and the design of multivariable fuzzy controller for the activated sludge process (활성오니 공정의 모델링 및 다변수 퍼지 제어기 설계에 관한 연구)

  • 남의석;오성권;황희수;최진혁;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.502-506
    • /
    • 1992
  • In this study, we proposed the fuzzy modeling method and designed a model-based logic controller for Activated and Sludge Process(A.S.P.) in sewage treatment. The identification of the structure of fuzzy implications is carreid out by use of fuzzy c-means clustering algorithm. And to identify the parameters of fuzzy implications, we used the complex and the least square method. To tune the premise parameters automatically the complex method is implemented. The model-based fuzzy controller is designed by rules generated from the identified A.S.P. fuzzy model. The feasibility of the proposed approach is evaluated through the identification of the fuzzy model to describe an input-output relation of the A.S.P.. The performance of identified model-based fuzzy controller is evaluated through the computer simulations.

  • PDF

Maximum Power Point Tracking for Photovoltaic System Using Fuzzy Logic Controller

  • Abo-Khalil A.G.;Lee D.C.;Seok J.K.;Choi J.W.;Kim H.K.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.503-506
    • /
    • 2003
  • The photovoltaic generators have a nonlinear V-I characteristics and maximum power points which vary with the illumination levels and temperatures. Using maximum power point tracker with the intermediate converter can increase the system efficiency by matching the PV systems to the load. A novel MPPT control for photovoltaic system is proposed. The system input parameters are (dP, dI, and last incremental of duty ratio $L\deltaD$)and the output is the new incremental value (new ${\deltaD}$) according to the maximum power point under various illumination levels. Using fuzzy logic controller allows extracting the maximum power rapidly and without significant oscillations. Also FLC provides excellent features such as fast response, good performance and the ability to change the fuzzy parameters to improve control system.

  • PDF