• Title/Summary/Keyword: Input and Output Parameters

Search Result 889, Processing Time 0.033 seconds

A Study on the Real Time Analysis of Plastic Deformation Process using WWW(World Wide Web) (웹을 이용한 실시간 소성가공의 해석에 관한 연구)

  • 이상돈;최호준;방세윤;임중연;이호용
    • Transactions of Materials Processing
    • /
    • v.12 no.2
    • /
    • pp.110-115
    • /
    • 2003
  • This paper is concerned with the compression test and forming process of flange by using virtual reality and analysis(simulation) program. This virtual manufacturing can be carried out one personal computer without any expensive devices for experiment. The virtual manufacturing composed of three modules such as the imput, calculation and the output modules on internet. Internet user can give the material's property and process parameters to the sever computer at the input module. On the calculation module, a simulator computes the virtual manufacturing process by analysis program and stores the data as a file. The output module is the program in which internet user can confirm virtual manufacturing results by showing tables, graphs, and 3D animation. This programs is designed by an internet language such as HTML, CGI, VRML and JAVA ,while analysis programs use the finite increasing, the virtual manufacturing technique will substitute many real experiments in the future.

스테이터 및 로터의 블랭킹에 관한 자동화된 공정설계 및 금형설계 시스템

  • Choi, Jae-Chan;Kim, Byung-Min;Kim, Chul;Lee, Seung-Min
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.642-647
    • /
    • 1994
  • This paper describes some research works of computer-aided design of blanking & piercing progressive die for stator and rotor parts by the press. An approach to the system is based on knowledge based rules. The developed system is composed of five main modules such as input & graphic interface, blanking feasibility check, strip layout, die layout and output module. Using this system, design parameters (geometric shapes, die generated in dimensions and dimensions of tool elements) are determined and output is generated in graphic form. Knowledges for tool design are extracted from the plasticity theories, handbooks, relevent references and empirical know-hows of experts in blanking companies. The developed system provides powerful capabilities for process planning and die design of stator and rotor parts.

  • PDF

A Analysis on the Effect of the Controller Design due to Performance Index (평가지표에 따른 제어기 설계 영향 분석)

  • Yoo, Hang-Youal;Lee, Jung-Kuk;Lee, Keum-Won;Lee, Jun-Mo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.90-94
    • /
    • 2004
  • Among various modern control theories, PID control has been well used for several decades. PID algorithms needs son tuning methods are used for selecting PID parameters. But in some cases various kinds of performance indices are used instead of well-known tuning rules, and so variable type of performance index must be tested so that controllers, output characteristics and disturbance rejection property meets some specifications. In this paper, linear conbinational type of performance using error signal, time, control input and robustness is used to the PID control of air conditioning system. By the 2 DOF PID parmeters minimizing perfromacne index, controllers, output characteristics and robustness properties are analyzed. Simulations are done with MATLAB m file and mdl files.

  • PDF

Practical Implementation of an Interleaved Boost Converter for Electric Vehicle Applications

  • Wen, Huiqing;Su, Bin
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.1035-1046
    • /
    • 2015
  • This study presents a practical implementation of a multi-mode two-phase interleaved boost converter for fuel cell electric vehicle application. The main operating modes, which include two continuous conducting modes and four discontinuous conducting modes, are discussed. The boundaries and transitions among these modes are analyzed with consideration of the inductor parasitic resistance. The safe operational area is analyzed through a comparison of the different operating modes. The output voltage and power characteristics with open-loop or closed-loop operation are also discussed. Key performance parameters, including the DC voltage gain, input ripple current, output ripple voltage, and switch stresses, are presented and supported by simulation and experimental results.

Implementation of The Fluid Circulation Blood Pressure Simulator (유체 순환 혈압 시뮬레이터의 구현)

  • Kim, C.H.;Lee, K.W.;Nam, K.G.;Jeon, G.R.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.6
    • /
    • pp.768-776
    • /
    • 2007
  • A new type of the fluid circulation blood pressure simulator was proposed to enhance the blood pressure simulator used for the development and evaluation of automatic sphygmomanometers. Various pressure waveform of fluid flowing in the pipe was reproduced by operating the proportional control valve after applying a pressure on the fluid in pressurized oil tank. After that, appropriate fluid was supplied by operating the proportional control valve, which enabled to reproduce various pressure wave of the fluid flowing in the tube. To accomplish this work, the mathematical model was carefully reviewed in cooperating with the proposed simulator. After modeling the driving signal as input signal and the pressure in internal tube as output signal, the simulation on system parameters such as internal volume, cross-section of orifice and supply pressure, which are sensitive to dynamic characteristic of system, was accomplished. System parameters affecting the dynamic characteristic were analyzed in the frequency bandwidth and also reflected to the design of the plant. The performance evaluator of fluid dynamic characteristic using proportional control signal was fabricated on the basis of obtained simulation result. An experimental apparatus was set-up and measurements on the dynamic characteristic, nonlinearity, and rising and falling response was carried out to verify the characteristic of the fluid dynamic model. Controller was designed and thereafter, simulation was performed to control the output signal with respect to the reference input in the fluid dynamic model using the proposed proportional control valve. Hybrid controller combined with an proportional controller and feed-forward controller was fabricated after applying a disturbance observer to the control plant. Comparison of the simulations between the conventional proportional controller and the proposed hybrid simulator indicated that even though the former showed good control performance.

Optimization of VIGA Process Parameters for Power Characteristics of Fe-Si-Al-P Soft Magnetic Alloy using Machine Learning

  • Sung-Min, Kim;Eun-Ji, Cha;Do-Hun, Kwon;Sung-Uk, Hong;Yeon-Joo, Lee;Seok-Jae, Lee;Kee-Ahn, Lee;Hwi-Jun, Kim
    • Journal of Powder Materials
    • /
    • v.29 no.6
    • /
    • pp.459-467
    • /
    • 2022
  • Soft magnetic powder materials are used throughout industries such as motors and power converters. When manufacturing Fe-based soft magnetic composites, the size and shape of the soft magnetic powder and the microstructure in the powder are closely related to the magnetic properties. In this study, Fe-Si-Al-P alloy powders were manufactured using various manufacturing process parameter sets, and the process parameters of the vacuum induction melt gas atomization process were set as melt temperature, atomization gas pressure, and gas flow rate. Process variable data that records are converted into 6 types of data for each powder recovery section. Process variable data that recorded minute changes were converted into 6 types of data and used as input variables. As output variables, a total of 6 types were designated by measuring the particle size, flowability, apparent density, and sphericity of the manufactured powders according to the process variable conditions. The sensitivity of the input and output variables was analyzed through the Pearson correlation coefficient, and a total of 6 powder characteristics were analyzed by artificial neural network model. The prediction results were compared with the results through linear regression analysis and response surface methodology, respectively.

Ground Vibration Test for Korea Sounding Rocket - III (KSR-III의 전기체 모달 시험)

  • 우성현;김영기;이동우;문남진;김홍배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.441-447
    • /
    • 2002
  • KSR-III(Korea Sounding Rocket - III), which is being developed by Space Technology R&D Division of KARI(Korea Aerospace Research Institute) will be launched in late 2002. It is a three-stage, liquid propellant rocket which can reach 250 km altitude and will carry out observation of ozone layer and scientific experiments, such as microgravity experiment, and atmospheric measurement. KSR-III is believed to be an intermediate to the launch vehicle capable of carrying a satellite to its orbit. Space Test Department of KARI performed GVT(Ground Vibration Test) fer KSR-III EM at Rocket Test Building of KARI. GVT is very important for predicting the behavior of rocket in its operation, developing flight control program and performing aerodynamic analysis. This paper gives an introduction of rocket GVT configuration and information on test procedures, techniques and results of It. In this test. to simulate free-free condition, test object hung in the air laterally by 4 bungee cords specially devised. For the excitation of test object, pure random signal by two electromagnetic shakers was used and total 22 frequency response functions were achieved. Polyreference parameter estimation was performed to identify the modal parameters with MIMO(Multi-Input-Multi-Output) method. As the result of the test, low frequency mode shapes and modal parameters below 60Hz were identified

  • PDF

A Study on the One-Stage 3-Dimensional Axial Turbine Performance Test with Different Incidence Angle (입사각 변경에 따른 단단 3차원 축류형 터빈의 성능시험에 관한 연구)

  • 조수용;박찬우
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.2
    • /
    • pp.24-31
    • /
    • 2001
  • An axial-type turbine design technology is developed. In order to design one-stage turbine, the preliminary design method is applied, and then design parameters are chosen after analyzing gas properties within the turbine passage using the streamline curvature method. Stator blade is designed using C4 profile, and rotor blade is designed using shape parameters. Stator is manufactured as an integral type and rotor is manufactured to be disassembled from the disc for changing blade incidence angle. The output power from the rotor is measured with various RPM and input power. Experimental results show that the maximum efficiency of turbine rotor is obtained on the design point, and the output power is proportionally decreased with the negative incidence angle even the test turbine is a reaction turbine. The efficiency of turbine rotor is decreased to 5% by $7.5^{\cire}$ negative incidence angle from the designed value.

  • PDF

LabVIEW Based Laboratory Typed Test Setup for the Determination of Induction Motor Performance Characteristics

  • Calis, Hakan;Caki, Eyup
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.1928-1934
    • /
    • 2014
  • Induction motors are widely used due to their rugged, robust and easy to care features. Since they are heavily used in industry, testing of three phase induction motors have play a vital role. In order to determine motor equivalent circuit parameters, efficiency of motor, squirrel caged laboratory sized an induction motor test setup is prepared. It is suitable for the induction motor with the frame size of 100 and 112. A virtual Instrumentation typed engineering workbench (called as LabVIEW) software packet, is utilized as a graphical user interface program. Motor input power is measured by measuring the input voltage, current and power factor with the help of hall effect typed voltage and current transformers. Also, the output power is measured by measuring the speed and torque with the help of an encoder and torque sensor. All outputs of the voltage and current transformer, encoder and temperature, torque sensors are given to the Data Acquisition Card (DAQ) which acquires the data for processing and then the equivalent circuit parameters, efficiency, performance and loading characteristics are found out, using LabVIEW based user interface. It is suggested to use this test rig for the quality control of produced motors in industry, and an educational experiment setup in the school laboratories.

Bayesian Value of Information Analysis with Linear, Exponential, Power Law Failure Models for Aging Chronic Diseases

  • Chang, Chi-Chang
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.2
    • /
    • pp.200-219
    • /
    • 2008
  • The effective management of uncertainty is one of the most fundamental problems in medical decision making. According to the literatures review, most medical decision models rely on point estimates for input parameters. However, it is natural that they should be interested in the relationship between changes in those values and subsequent changes in model output. Therefore, the purpose of this study is to identify the ranges of numerical values for which each option will be most efficient with respect to the input parameters. The Nonhomogeneous Poisson Process(NHPP) was used for describing the behavior of aging chronic diseases. Three kind of failure models (linear, exponential, and power law) were considered, and each of these failure models was studied under the assumptions of unknown scale factor and known aging rate, known scale factor and unknown aging rate, and unknown scale factor and unknown aging rate, respectively. In addition, this study illustrated developed method with an analysis of data from a trial of immunotherapy in the treatment of chronic Granulomatous disease. Finally, the proposed design of Bayesian value of information analysis facilitates the effective use of the computing capability of computers and provides a systematic way to integrate the expert's opinions and the sampling information which will furnish decision makers with valuable support for quality medical decision making.