• Title/Summary/Keyword: Input and Output Parameters

Search Result 889, Processing Time 0.034 seconds

The Design of Multi-FNN Model Using HCM Clustering and Genetic Algorithms and Its Applications to Nonlinear Process (HCM 클러스터링과 유전자 알고리즘을 이용한 다중 FNN 모델 설계와 비선형 공정으로의 응용)

  • 박호성;오성권;김현기
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.47-50
    • /
    • 2000
  • In this paper, an optimal identification method using Multi-FNN(Fuzzy-Neural Network) is proposed for model ins of nonlinear complex system. In order to control of nonlinear process with complexity and uncertainty of data, proposed model use a HCM clustering algorithm which carry out the input-output data preprocessing function and Genetic Algorithm which carry out optimization of model. The proposed Multi-FNN is based on Yamakawa's FNN and it uses simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rules. HCM clustering method which carry out the data preprocessing function for system modeling, is utilized to determine the structure of Multi-FNN by means of the divisions of input-output space. Also, the parameters of Multi-FNN model such as apexes of membership function, learning rates and momentum coefficients are adjusted using genetic algorithms. Also, a performance index with a weighting factor is presented to achieve a sound balance between approximation and generalization abilities of the model, To evaluate the performance of the proposed model, we use the time series data for gas furnace and the numerical data of nonlinear function.

  • PDF

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Probabilistic Design under Uncertainty using Response Surface Methodology and Pearson System (반응표면방법론과 피어슨 시스템을 이용한 불확실성하의 확률적 설계)

  • Baek Seok-Heum;Cho Soek-Swoo;Joo Won-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.275-282
    • /
    • 2006
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolernce of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or etimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte Carlo simulation and got the probabilistic sensitivity. The sensitivity of structural response with respect to in constant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF

Estimating Evapotranspiration of Rice Crop Using Neural Networks -Application of Back-propagation and Counter-propagation Algorithm- (신경회로망을 이용한 수도 증발산량 예측 -백프로파게이션과 카운터프로파게이션 알고리즘의 적용-)

  • 이남호;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.36 no.2
    • /
    • pp.88-95
    • /
    • 1994
  • This paper is to evaluate the applicability of neural networks to the estimation of evapotranspiration. Two neural networks were developed to forecast daily evapotranspiration of the rice crop with back-propagation and counter-propagation algorithm. The neural network trained by back-propagation algorithm with delta learning rule is a three-layer network with input, hidden, and output layers. The other network with counter-propagation algorithm is a four-layer network with input, normalizing, competitive, and output layers. Training neural networks was conducted using daily actual evapotranspiration of rice crop and daily climatic data such as mean temperature, sunshine hours, solar radiation, relative humidity, and pan evaporation. During the training, neural network parameters were calibrated. The trained networks were applied to a set of field data not used in the training. The created response of the back-propagation network was in good agreement with desired values and showed better performances than the counter-propagation network did. Evaluating the neural network performance indicates that the back-propagation neural network may be applied to the estimation of evapotranspiration of the rice crop. This study does not provide with a conclusive statement as to the ability of a neural network to evapotranspiration estimating. More detailed study is required for better understanding and evaluating the behavior of neural networks.

  • PDF

Power System Oscillations Damping by Robust Decentralized DFIG Wind Turbines

  • Surinkaew, Tossaporn;Ngamroo, Issarachai
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.487-495
    • /
    • 2015
  • This paper proposes a new robust decentralized power oscillation dampers (POD) design of doubly-fed induction generator (DFIG) wind turbine for damping of low frequency electromechanical oscillations in an interconnected power system. The POD structure is based on the practical $2^{nd}$-order lead/lag compensator with single input. Without exact mathematical model, the inverse output multiplicative perturbation is applied to represent system uncertainties such as system parameters variation, various loading conditions etc. The parameters optimization of decentralized PODs is carried out so that the stabilizing performance and robust stability margin against system uncertainties are guaranteed. The improved firefly algorithm is applied to tune the optimal POD parameters automatically. Simulation study in two-area four-machine interconnected system shows that the proposed robust POD is much superior to the conventional POD in terms of stabilizing effect and robustness.

Reliability Design using Asymptotic Variance of Inverse Cumulative Distribution Function (분위수의 점근적 분산을 이용한 신뢰성 설계)

  • Cho H.J.;Baek S.H.;Hong S.H.;Cho S.S.;Joo W.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1682-1685
    • /
    • 2005
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolerance of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or estimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte-Carlo Method and got the probabilistic sensitivity. The sensitivity of structural response with respect to inconstant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF

Optimal Auto-tuning Algorithm for Design of a Hybrid Fuzzy Controller (하이브리드 퍼지제어기의 설계를 위한 최적 자동동조알고리즘)

  • Kim, Joong-Young;Lee, Dae-Keun;Oh, Sung-Kwan;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.501-503
    • /
    • 1999
  • In this paper, the design method of a hybrid fuzzy controller with an optimal auto-tuning method is proposed. The conventional PID controller becomes so sensitive to the control environments and the change of parameters that the efficiency of its utility for the complex and nonlinear plant has been questioned in transient state. In this paper, first, a hybrid fuzzy logic controller(HFLC) is proposed. The control input of the system in the HFLC is a convex combination by a fuzzy variable of the FLC's output in transient state and the PID's output in steady state. Second, a powerful auto-tuning algorithm is presented to automatically improve the Performance of controller, utilizing the improved complex method and the genetic algorithm. The algorithm estimates automatically the optimal values of scaling factors and PID coefficients. Controllers are applied to the plants with time-delay and the DC servo motor Computer simulations are conducted at the step input and the system performances are evaluated in the ITAE.

  • PDF

Cooperative MIMO Channel Simulation Based on the Geometrical Ring Model (기하학적 Ring 모델에 기반을 둔 협력형 MIMO 채널 시뮬레이터)

  • Yang, Mi-Sun;Kim, Dong-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.235-239
    • /
    • 2008
  • In this paper, we study a simulation model for cooperative MIMO (multiple-input multiple-output) channels and present a cooperative one-ring channel model which is extended from the geometrical one-ring and two-ring scattering models. Assuming that the source, the destination and the relay are surrounded by an infinite number of scatters, we derive a reference model for the cooperative one-ring channel and propose a simulation model based on the reference model provided in the paper. Then we show how modeling parameters of the simulation model are determined to match the correlation functions for the respective models. With numerical investigation, we also show that the correlation functions for the reference and the simulation are well matched.

Design of phase-only diffractive pattern elements using a two-stage iterative Fourier transform algorithm (2단계 iterative Fourier transform 알고리즘을 이용한 위상형 회절무늬소자 설계)

  • 정필호;조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.11 no.1
    • /
    • pp.47-57
    • /
    • 2000
  • A two-stage iterative Fourier transform algorithm, based on hybrid input-output algorithm and new Pnoise algorithm, is used to design continuous and quantized phase-only diffractive pattern elements which produce arbitrary given intensity patterns via Fraunhofer diffraction. Numerical results for two $128\times128$ binary patterns and two grayscale patterns are compared with those of other algorithms. It is found that the algorithm yields better signal-to-noise ratio and even better uniformity with slightly lower diffraction efficiency than other algorithms. We investigated the dependence of performance on parameters used in the algorithm, size of noise region, and the number of phase levels for quantized elements. In the case of quantized phase elements, the size of noise region plays a greater role in determining the performance of the algorithm than given intensity pattern itself. tself.

  • PDF

Application of Ant Colony Optimization and Particle Swarm Optimization for Neural Network Model of Machining Process (절삭가공의 Neural Network 모델을 위한 ACO 및 PSO의 응용)

  • Oh, Soo-Cheol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.36-43
    • /
    • 2019
  • Turning, a main machining process, is a widespread process in metal cutting industries. Many researchers have investigated the effects of process parameters on the machining process. In the turning process, input variables including cutting speed, feed, and depth of cut are generally used. Surface roughness and electric current consumption are used as output variables in this study. We construct a simulation model for the turning process using a neural network, which predicts the output values based on input values. In the neural network, obtaining the appropriate set of weights, which is called training, is crucial. In general, back propagation (BP) is widely used for training. In this study, techniques such as ant colony optimization (ACO) and particle swarm optimization (PSO) as well as BP were used to obtain the weights in the neural network. Particularly, two combined techniques of ACO_BP and PSO_BP were utilized for training the neural network. Finally, the performances of the two techniques are compared with each other.