• 제목/요약/키워드: Input Normalization

검색결과 106건 처리시간 0.025초

이산치 직접 적응제어기의 견실성 향상 (The Robustness Improvement of Discrete-Time Direct Adaptive Controllers)

  • 천희영;박귀태;박승규;권성하
    • 대한전기학회논문지
    • /
    • 제39권3호
    • /
    • pp.291-300
    • /
    • 1990
  • This paper presents a robust discrete-time direct adaptive pole-placement with new discrete parameter adaptation algorithm (PAA), the standard RLS is suitably modified by adding a term which is exponentially proportional to the filtered tracking error and using a signal normalization. It is shown that it makes the overall adaptive system more robust in the presence of disturbances or unmodeled dynamics. In order to discuss the robustness improvement by using the input-output stability theory, the overall adaptive control system is reformulated and the sector theory is applied. In addition, computer simulation results are presented to complement the theoretical development.

  • PDF

조명 변화에 강인한 얼굴 검출을 위한 좌우대칭 평균화 기법 (A Bilateral Symmetry Average Method for Robust Face Detection against Illumination Variation)

  • 조치영;김수환
    • 게임&엔터테인먼트 논문지
    • /
    • 제2권2호
    • /
    • pp.45-50
    • /
    • 2006
  • 형판 정합 기반의 얼굴 검출 시스템에서 획득된 이미지에 대한 명암 정규화 및 영상 보정을 위해 히스토그램 평활화나 로그 변환 등을 사용한다. 이 방법은 조명 변화에 의해 발생한 이미지의 부분 명암 왜곡에는 효과적이지 못하다는 것이 알려져 있다. 본 논문에서는 부분적 명암 왜곡에 매우 효과적인 영상 보정을 수행하는 좌우대칭 평균화 기법을 제시한다. 실험 결과 이 기법은 기존의 방식보다 매우 효율적인 검출 성능을 보일 뿐만 아니라 얼굴 후보의 개수도 현저하게 감소하는 것으로 나타났다.

  • PDF

A Study on Detection and Recognition of Facial Area Using Linear Discriminant Analysis

  • Kim, Seung-Jae
    • International journal of advanced smart convergence
    • /
    • 제7권4호
    • /
    • pp.40-49
    • /
    • 2018
  • We propose a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. We propose detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). The feature vector is applied to LDA and using Euclidean distance of intra-class variance and inter class variance in the 2nd dimension, the final analysis and matching is performed. Experimental results show that the proposed method has a wider distribution when the input image is rotated $45^{\circ}$ left / right. We can improve the recognition rate by applying this feature value to a single algorithm and complex algorithm, and it is possible to recognize in real time because it does not require much calculation amount due to dimensional reduction.

시큐어 코딩을 적용한 입력데이터 정규화 검증 연구 (The input data normalization studies using secure coding)

  • 이지선;최진영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2013년도 추계학술발표대회
    • /
    • pp.644-647
    • /
    • 2013
  • 인터넷과 정보기술의 발전으로 정보시스템들이 보편화 되고, 편리함을 제공하고 있다. 반면에 시스템은 더욱 복잡해지고, 프라이버시 침해, 개인정보 수집 등 사이버공격은 계속적으로 증가하고 있으며 이로 인한 피해가 심각하다. 사이버 공격을 예방하기 위해서는 정보시스템 제품출시 이전 단계에서 제품의 보안 취약점을 제거하는 것이 중요하다. 따라서 개발단계부터 보안을 고려한 소프트웨어를 개발하는 것은 향후 발생 가능한 보안취약점을 예방하고 피해를 최소화 하여 보다 안전한 소프트웨어를 개발하는 근본적인 해결책이 된다. 본 논문에서는 소프트웨어 개발과정에서 발생할 수 있는 보안약점을 최소화 하여 안전한 소프트웨어를 개발하기 위한 시큐어 코딩(secure coding)과 입력 데이터 값(문자열)을 정규화 함으로써 크로스 사이트 스크립팅(XSS)의 공격을 사전에 예방할 수 있는 방법을 제시한다.

Artificial intelligence (AI) based analysis for global warming mitigations of non-carbon emitted nuclear energy productions

  • Tae Ho Woo
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4282-4286
    • /
    • 2023
  • Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.

Poly Phase Filter 기반의 영상 스케일러를 이용한 개선 된 정맥 영역 추출 방법 (Enhanced Vein Detection Method by Using Image Scaler Based on Poly Phase Filter)

  • 김희경;이승민;강봉순
    • 한국정보통신학회논문지
    • /
    • 제22권5호
    • /
    • pp.734-739
    • /
    • 2018
  • 생체 인식 방식 중 하나인 지문 인식과 홍채 인식 등은 태양광과 같은 외부 요소에 쉽게 영향을 받는다. 따라서 최근에는 생체 내부의 특징을 이용하는 방법으로 지정맥 인식을 이용하고 있다. 정확한 정맥 인식을 위해서는 정맥 영역과 배경 영역을 확실하게 분리하는 것이 중요하다. 하지만 입력 영상에 포함 된 불균일한 조명 성분의 영향으로 정맥 영역과 배경 영역을 분리하는 것이 어려웠기 때문에 입력 영상의 조명 성분을 정규화 시킨 후 정맥 영역과 배경 영역을 분리 할 수 있는 방법이 제안되었다. 본 논문에서는 기존의 조명 정규화 방법을 바탕으로 영상 스트레칭 과정이 포함 된 영상의 전처리 단계와 이진화, 레이블링 방법을 개선하여 기존의 정맥 인식 기법에 비해 더 나은 질적 개선을 이루고 처리 속도를 향상 시킬 수 있는 방법을 제안한다.

전력계통 Peak-Shaving 성능향상을 위한 1일 부하곡선 생성 (Generation of Daily Load Curves for Performance Improvement of Power System Peak-Shaving)

  • 손수빈;송화창
    • 한국지능시스템학회논문지
    • /
    • 제24권2호
    • /
    • pp.141-146
    • /
    • 2014
  • 본 논문은 Peak Shaving 알고리즘의 성능 향상을 위한 예측 부하 곡선의 생성의 한 방법을 제시한다. 여기서 논하는 Peak Shaving 알고리즘은 대용량의 배터리 에너지 저장시스템 (BESS, Battery Energy Storage System)을 위한 PMS (Power Management System)의 장주기 스케쥴링 알고리즘을 의미한다. 위의 PMS는 주로 배터리에서 에너지의 입출력을 제어하는 데에 주목적이 있다. 이를 위해서 Peak Shaving 알고리즘이 사용되는데, 여기서 예측 부하곡선과 실제 부하곡선 사이의 불확실성이 나타난다. 원활한 에너지의 충,방전을 위하여 본 논문에서는 주 단위의 표준화 방법과 계절별 부하의 특성을 고려한 예측 부하 곡선 생성 방법을 제안한다.

LSTM 기반의 sequence-to-sequence 모델을 이용한 한글 자동 띄어쓰기 (LSTM based sequence-to-sequence Model for Korean Automatic Word-spacing)

  • 이태석;강승식
    • 스마트미디어저널
    • /
    • 제7권4호
    • /
    • pp.17-23
    • /
    • 2018
  • 자동 띄어쓰기 특성을 효과적으로 처리할 수 있는 LSTM(Long Short-Term Memory Neural Networks) 기반의 RNN 모델을 제시하고 적용한 결과를 분석하였다. 문장이 길거나 일부 노이즈가 포함된 경우에 신경망 학습이 쉽지 않은 문제를 해결하기 위하여 입력 데이터 형식과 디코딩 데이터 형식을 정의하고, 신경망 학습에서 드롭아웃, 양방향 다층 LSTM 셀, 계층 정규화 기법, 주목 기법(attention mechanism)을 적용하여 성능을 향상시키는 방법을 제안하였다. 학습 데이터로는 세종 말뭉치 자료를 사용하였으며, 학습 데이터가 부분적으로 불완전한 띄어쓰기가 포함되어 있었음에도 불구하고, 대량의 학습 데이터를 통해 한글 띄어쓰기에 대한 패턴이 의미 있게 학습되었다. 이것은 신경망에서 드롭아웃 기법을 통해 학습 모델의 오버피팅이 되지 않도록 함으로써 노이즈에 강한 모델을 만들었기 때문이다. 실험결과로 LSTM sequence-to-sequence 모델이 재현율과 정확도를 함께 고려한 평가 점수인 F1 값이 0.94로 규칙 기반 방식과 딥러닝 GRU-CRF보다 더 높은 성능을 보였다.

천연가스 누출 예측을 위한 OrdinalEncoder 기반 DNN (OrdinalEncoder based DNN for Natural Gas Leak Prediction)

  • 홍고르출;이상무;김미혜
    • 한국융합학회논문지
    • /
    • 제10권10호
    • /
    • pp.7-13
    • /
    • 2019
  • 대부분의 천연가스(NG)는 공기 중으로 누출 되며 그중에서도 메탄가스의 누출은 기후에 많은 영향을 준다. 미국 도시의 거리에서 메탄가스 누출 데이터를 수집하였다. 본 논문은 메탄가스누출 정도를 예측하는 딥러닝(Deep Neural Network)방법을 제안하였으며 제안된 방법은 OrdinalEncoder(OE) 기반 K-means clustering과 Multilayer Perceptron(MLP)을 활용하였다. 15개의 특징을 입력뉴런과 오류역전파 알고리즘을 적용하였다. 데이터는 실제 미국의 거리에서 누출되는 메탄가스농도 오픈데이터를 활용하여 진행하였다. 우리는 OE 기반 K-means알고리즘을 적용하여 데이터를 레이블링 하였고 NG누출 예측을 위한 정규화 방법 OE, MinMax, Standard, MaxAbs. Quantile 5가지 방법을 실험하였다. 그 결과 OE 기반 MLP의 인식률이 97.7%, F1-score 96.4%이며 다른 방법보다 상대적으로 높은 인식률을 보였다. 실험은 SPSS 및 Python으로 구현하였으며 실제오픈 데이터를 활용하여 실험하였다.

Stock Market Forecasting : Comparison between Artificial Neural Networks and Arch Models

  • Merh, Nitin
    • Journal of Information Technology Applications and Management
    • /
    • 제19권1호
    • /
    • pp.1-12
    • /
    • 2012
  • Data mining is the process of searching and analyzing large quantities of data for finding out meaningful patterns and rules. Artificial Neural Network (ANN) is one of the tools of data mining which is becoming very popular in forecasting the future values. Some of the areas where it is used are banking, medicine, retailing and fraud detection. In finance, artificial neural network is used in various disciplines including stock market forecasting. In the stock market time series, due to high volatility, it is very important to choose a model which reads volatility and forecasts the future values considering volatility as one of the major attributes for forecasting. In this paper, an attempt is made to develop two models - one using feed forward back propagation Artificial Neural Network and the other using Autoregressive Conditional Heteroskedasticity (ARCH) technique for forecasting stock market returns. Various parameters which are considered for the design of optimal ANN model development are input and output data normalization, transfer function and neuron/s at input, hidden and output layers, number of hidden layers, values with respect to momentum, learning rate and error tolerance. Simulations have been done using prices of daily close of Sensex. Stock market returns are chosen as input data and output is the forecasted return. Simulations of the Model have been done using MATLAB$^{(R)}$ 6.1.0.450 and EViews 4.1. Convergence and performance of models have been evaluated on the basis of the simulation results. Performance evaluation is done on the basis of the errors calculated between the actual and predicted values.