This paper presents a robust discrete-time direct adaptive pole-placement with new discrete parameter adaptation algorithm (PAA), the standard RLS is suitably modified by adding a term which is exponentially proportional to the filtered tracking error and using a signal normalization. It is shown that it makes the overall adaptive system more robust in the presence of disturbances or unmodeled dynamics. In order to discuss the robustness improvement by using the input-output stability theory, the overall adaptive control system is reformulated and the sector theory is applied. In addition, computer simulation results are presented to complement the theoretical development.
형판 정합 기반의 얼굴 검출 시스템에서 획득된 이미지에 대한 명암 정규화 및 영상 보정을 위해 히스토그램 평활화나 로그 변환 등을 사용한다. 이 방법은 조명 변화에 의해 발생한 이미지의 부분 명암 왜곡에는 효과적이지 못하다는 것이 알려져 있다. 본 논문에서는 부분적 명암 왜곡에 매우 효과적인 영상 보정을 수행하는 좌우대칭 평균화 기법을 제시한다. 실험 결과 이 기법은 기존의 방식보다 매우 효율적인 검출 성능을 보일 뿐만 아니라 얼굴 후보의 개수도 현저하게 감소하는 것으로 나타났다.
International journal of advanced smart convergence
/
제7권4호
/
pp.40-49
/
2018
We propose a more stable robust recognition algorithm which detects faces reliably even in cases where there are changes in lighting and angle of view, as well it satisfies efficiency in calculation and detection performance. We propose detects the face area alone after normalization through pre-processing and obtains a feature vector using (PCA). The feature vector is applied to LDA and using Euclidean distance of intra-class variance and inter class variance in the 2nd dimension, the final analysis and matching is performed. Experimental results show that the proposed method has a wider distribution when the input image is rotated $45^{\circ}$ left / right. We can improve the recognition rate by applying this feature value to a single algorithm and complex algorithm, and it is possible to recognize in real time because it does not require much calculation amount due to dimensional reduction.
인터넷과 정보기술의 발전으로 정보시스템들이 보편화 되고, 편리함을 제공하고 있다. 반면에 시스템은 더욱 복잡해지고, 프라이버시 침해, 개인정보 수집 등 사이버공격은 계속적으로 증가하고 있으며 이로 인한 피해가 심각하다. 사이버 공격을 예방하기 위해서는 정보시스템 제품출시 이전 단계에서 제품의 보안 취약점을 제거하는 것이 중요하다. 따라서 개발단계부터 보안을 고려한 소프트웨어를 개발하는 것은 향후 발생 가능한 보안취약점을 예방하고 피해를 최소화 하여 보다 안전한 소프트웨어를 개발하는 근본적인 해결책이 된다. 본 논문에서는 소프트웨어 개발과정에서 발생할 수 있는 보안약점을 최소화 하여 안전한 소프트웨어를 개발하기 위한 시큐어 코딩(secure coding)과 입력 데이터 값(문자열)을 정규화 함으로써 크로스 사이트 스크립팅(XSS)의 공격을 사전에 예방할 수 있는 방법을 제시한다.
Nuclear energy is estimated by the machine learning method as the mathematical quantifications where neural networking is the major algorithm of the data propagations from input to output. As the aspect of nuclear energy, the other energy sources of the traditional carbon emission-characterized oil and coal are compared. The artificial intelligence (AI) oriented algorithm like the intelligence of a robot is applied to the modeling in which the mimicking of biological neurons is utilized in the mathematical calculations. There are graphs for nuclear priority weighted by climate factor and for carbon dioxide mitigation weighted by climate factor in which the carbon dioxide quantities are divided by the weighting that produces some results. Nuclear Priority and CO2 Mitigation values give the dimensionless values that are the comparative quantities with the normalization in 2010. The values are 1.0 in 2010 of the graphs which are changed to 24.318 and 0.0657 in 2040, respectively. So, the carbon dioxide emissions could be reduced in this study.
생체 인식 방식 중 하나인 지문 인식과 홍채 인식 등은 태양광과 같은 외부 요소에 쉽게 영향을 받는다. 따라서 최근에는 생체 내부의 특징을 이용하는 방법으로 지정맥 인식을 이용하고 있다. 정확한 정맥 인식을 위해서는 정맥 영역과 배경 영역을 확실하게 분리하는 것이 중요하다. 하지만 입력 영상에 포함 된 불균일한 조명 성분의 영향으로 정맥 영역과 배경 영역을 분리하는 것이 어려웠기 때문에 입력 영상의 조명 성분을 정규화 시킨 후 정맥 영역과 배경 영역을 분리 할 수 있는 방법이 제안되었다. 본 논문에서는 기존의 조명 정규화 방법을 바탕으로 영상 스트레칭 과정이 포함 된 영상의 전처리 단계와 이진화, 레이블링 방법을 개선하여 기존의 정맥 인식 기법에 비해 더 나은 질적 개선을 이루고 처리 속도를 향상 시킬 수 있는 방법을 제안한다.
본 논문은 Peak Shaving 알고리즘의 성능 향상을 위한 예측 부하 곡선의 생성의 한 방법을 제시한다. 여기서 논하는 Peak Shaving 알고리즘은 대용량의 배터리 에너지 저장시스템 (BESS, Battery Energy Storage System)을 위한 PMS (Power Management System)의 장주기 스케쥴링 알고리즘을 의미한다. 위의 PMS는 주로 배터리에서 에너지의 입출력을 제어하는 데에 주목적이 있다. 이를 위해서 Peak Shaving 알고리즘이 사용되는데, 여기서 예측 부하곡선과 실제 부하곡선 사이의 불확실성이 나타난다. 원활한 에너지의 충,방전을 위하여 본 논문에서는 주 단위의 표준화 방법과 계절별 부하의 특성을 고려한 예측 부하 곡선 생성 방법을 제안한다.
자동 띄어쓰기 특성을 효과적으로 처리할 수 있는 LSTM(Long Short-Term Memory Neural Networks) 기반의 RNN 모델을 제시하고 적용한 결과를 분석하였다. 문장이 길거나 일부 노이즈가 포함된 경우에 신경망 학습이 쉽지 않은 문제를 해결하기 위하여 입력 데이터 형식과 디코딩 데이터 형식을 정의하고, 신경망 학습에서 드롭아웃, 양방향 다층 LSTM 셀, 계층 정규화 기법, 주목 기법(attention mechanism)을 적용하여 성능을 향상시키는 방법을 제안하였다. 학습 데이터로는 세종 말뭉치 자료를 사용하였으며, 학습 데이터가 부분적으로 불완전한 띄어쓰기가 포함되어 있었음에도 불구하고, 대량의 학습 데이터를 통해 한글 띄어쓰기에 대한 패턴이 의미 있게 학습되었다. 이것은 신경망에서 드롭아웃 기법을 통해 학습 모델의 오버피팅이 되지 않도록 함으로써 노이즈에 강한 모델을 만들었기 때문이다. 실험결과로 LSTM sequence-to-sequence 모델이 재현율과 정확도를 함께 고려한 평가 점수인 F1 값이 0.94로 규칙 기반 방식과 딥러닝 GRU-CRF보다 더 높은 성능을 보였다.
대부분의 천연가스(NG)는 공기 중으로 누출 되며 그중에서도 메탄가스의 누출은 기후에 많은 영향을 준다. 미국 도시의 거리에서 메탄가스 누출 데이터를 수집하였다. 본 논문은 메탄가스누출 정도를 예측하는 딥러닝(Deep Neural Network)방법을 제안하였으며 제안된 방법은 OrdinalEncoder(OE) 기반 K-means clustering과 Multilayer Perceptron(MLP)을 활용하였다. 15개의 특징을 입력뉴런과 오류역전파 알고리즘을 적용하였다. 데이터는 실제 미국의 거리에서 누출되는 메탄가스농도 오픈데이터를 활용하여 진행하였다. 우리는 OE 기반 K-means알고리즘을 적용하여 데이터를 레이블링 하였고 NG누출 예측을 위한 정규화 방법 OE, MinMax, Standard, MaxAbs. Quantile 5가지 방법을 실험하였다. 그 결과 OE 기반 MLP의 인식률이 97.7%, F1-score 96.4%이며 다른 방법보다 상대적으로 높은 인식률을 보였다. 실험은 SPSS 및 Python으로 구현하였으며 실제오픈 데이터를 활용하여 실험하였다.
Journal of Information Technology Applications and Management
/
제19권1호
/
pp.1-12
/
2012
Data mining is the process of searching and analyzing large quantities of data for finding out meaningful patterns and rules. Artificial Neural Network (ANN) is one of the tools of data mining which is becoming very popular in forecasting the future values. Some of the areas where it is used are banking, medicine, retailing and fraud detection. In finance, artificial neural network is used in various disciplines including stock market forecasting. In the stock market time series, due to high volatility, it is very important to choose a model which reads volatility and forecasts the future values considering volatility as one of the major attributes for forecasting. In this paper, an attempt is made to develop two models - one using feed forward back propagation Artificial Neural Network and the other using Autoregressive Conditional Heteroskedasticity (ARCH) technique for forecasting stock market returns. Various parameters which are considered for the design of optimal ANN model development are input and output data normalization, transfer function and neuron/s at input, hidden and output layers, number of hidden layers, values with respect to momentum, learning rate and error tolerance. Simulations have been done using prices of daily close of Sensex. Stock market returns are chosen as input data and output is the forecasted return. Simulations of the Model have been done using MATLAB$^{(R)}$ 6.1.0.450 and EViews 4.1. Convergence and performance of models have been evaluated on the basis of the simulation results. Performance evaluation is done on the basis of the errors calculated between the actual and predicted values.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.