• 제목/요약/키워드: Input Normalization

검색결과 106건 처리시간 0.024초

ASMs을 이용한 특징점 추출에 기반한 3D 얼굴데이터의 정렬 및 정규화 : 정렬 과정에 대한 정량적 분석 (3D Face Alignment and Normalization Based on Feature Detection Using Active Shape Models : Quantitative Analysis on Aligning Process)

  • 신동원;박상준;고재필
    • 한국CDE학회논문집
    • /
    • 제13권6호
    • /
    • pp.403-411
    • /
    • 2008
  • The alignment of facial images is crucial for 2D face recognition. This is the same to facial meshes for 3D face recognition. Most of the 3D face recognition methods refer to 3D alignment but do not describe their approaches in details. In this paper, we focus on describing an automatic 3D alignment in viewpoint of quantitative analysis. This paper presents a framework of 3D face alignment and normalization based on feature points obtained by Active Shape Models (ASMs). The positions of eyes and mouth can give possibility of aligning the 3D face exactly in three-dimension space. The rotational transform on each axis is defined with respect to the reference position. In aligning process, the rotational transform converts an input 3D faces with large pose variations to the reference frontal view. The part of face is flopped from the aligned face using the sphere region centered at the nose tip of 3D face. The cropped face is shifted and brought into the frame with specified size for normalizing. Subsequently, the interpolation is carried to the face for sampling at equal interval and filling holes. The color interpolation is also carried at the same interval. The outputs are normalized 2D and 3D face which can be used for face recognition. Finally, we carry two sets of experiments to measure aligning errors and evaluate the performance of suggested process.

퍼지양자화 은닉 마르코프 모델에서 코드워드 종속거리 정규화와 Instar 형태의 퍼지 기여도에 기반한 출력확률의 평활화 (Codeword-Dependent Distance Normalization and Smoothing of Output Probalities Based on the Instar-formed Fuzzy Contribution in the FVQ-DHMM)

  • 최환진;김연준;오영환
    • 한국음향학회지
    • /
    • 제16권2호
    • /
    • pp.71-79
    • /
    • 1997
  • 본 논문에서는 FVQ-DHMM(fuzzy vector quantization-discrete hidden Markov model)에서 강인한 출력확률의 추정을 위해서 코드워드 종속 거리 정규화와 출력확률에 대한 instar 형태의 퍼지 평활화 방법을 제안한다. FVQ-DHMM은 DHMM의 변형된 모델로, 상태별 출력확률이 입력패턴에 대한 각 코드워드와의 가중치와 출력확률의 곱에 대한 합의 형태로 추정된다. FVQ-DHMM의 성능이 가중치 요소와 상태별 출력분포에 영향을 받으므로, 가중치 요소와 상태별 출력분포를 강인하게 추정하는 방법이 필요하게 된다. 실험결과, 제안된 코드워드 종속 거리 정규화(CDDN : codeword dependent distance normalization)를 적용한 방법이 기존의 FVQ-DHMM에 비해 24%의 오인식률 감소가 있었으며, 상태별 출력분포에 대해서 평활화를 적용한 경우 79%의 오식율을 감소 시킴을 알 수 있었다. 이러한 결과는 제안된 CDDN과 퍼지 평활화의 사용이 향상된 인식율을 얻는데 주요하며, 결과적으로 제안된 방법이 FVQ-HMM을 위한 강인한 출력확률의 추정을 위한 대안으로 유용함을 보여준다고 할 수 있다.

  • PDF

코 형상 마스크를 이용한 3차원 얼굴 영상의 특징 추출 (Facial Feature Extraction using Nasal Masks from 3D Face Image)

  • 김익동;심재창
    • 대한전자공학회논문지SP
    • /
    • 제41권4호
    • /
    • pp.1-7
    • /
    • 2004
  • 본 논문은 3차원 얼굴 영상을 이용한 얼굴 인식에 있어서, 정규화 과정에 사용될 얼굴의 특징 영역을 추출하는 방법을 제안한다. 3차원 얼굴 영상은 조명의 변화에 상관없이 얼굴의 특징 분석이 가능하고, 이를 이용한 얼굴 인식이 가능하다. 그러나 입력된 형상의 자세에 따라 회전, 기울어진 정도, 그리고 좌우로 움직인 정도가 다르다. 이런 특성을 고려하지 않고 추출된 특징들은 잘못된 인식 결과를 초래할 수 있다. 이런 이유로 입력에서의 오류들을 바로잡는 정규화 과정이 필요하다. 정규화 과정에서는 얼굴의 기하학적인 특징인 눈, 코, 입 등을 이용하는 것이 일반적이다. 이들 중, 코는 3차원 얼굴 영상에서 두드러진 특징이 될 수 있다. 본 연구에서는 코의 실제 형상과 유사한 긴 추출 마스크를 사용하여 입력된 영상으로부터 코를 추출하는 방법을 제안한다.

스마트폰 애플리케이션을 위한 임베디드형 피드백 지원 검색체 (Embeded-type Search Function with Feedback for Smartphone Applications)

  • 강문중;황민태
    • 한국정보통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.974-983
    • /
    • 2017
  • 본 논문에서는 안드로이드 기반의 각종 어플리케이션에 내장시켜 사용가능한 검색체에 대해 연구하였다. 이를 위해 조사와 같이 무의미하지만 자주 사용되는 단어를 빈도수에 따라 억제하는 BM25, 아이템의 길이 편차에 따른 검색 순위 문제를 해결하기 위해 아이템의 길이에 따라 중요도를 보정하는 Pivoted Length Normalization, 그리고 벡터공간 모형 상에서 쿼리 벡터를 관련 있는 것으로 판정된 아이템들의 벡터 그룹으로 끌어당겨 보정하는 Rocchio's Method를 사용해 묵시적 피드백 기능을 지원하도록 하였다. 그리고 색인 작업은 오프라인 동작을 위한 간단 색인과 온라인 동작을 위한 정밀 색인의 두 단계로 나누어 동작성을 보장하도록 하였다. 본 논문에서 연구한 피드백 지원 검색체는 쿼리 유추를 통해 사용자의 입력을 색인된 자료와 비교해 입력 내용을 예측하고 오타 등의 사용자 실수에 대해서도 대응하므로 스마트폰 어플리케이션에 손쉽게 탑재되어 검색 기능을 향상시킬 수 있을 것으로 기대한다.

다양성 및 안정성 확보를 위한 스타일 전이 네트워크 손실 함수 정규화 기법 (A Normalized Loss Function of Style Transfer Network for More Diverse and More Stable Transfer Results)

  • 최인성;김용구
    • 방송공학회논문지
    • /
    • 제25권6호
    • /
    • pp.980-993
    • /
    • 2020
  • 딥-러닝 기반 스타일 전이 기법은 영상의 고차원적 구조적 특성을 적절하게 반영하여 높은 품질의 스타일 전이 결과를 제공함으로써 최근 크게 주목받고 있다. 본 논문은 이러한 딥-러닝 기반 스타일 전이 방식의 안정적이고 보다 다양한 스타일 전이 결과 제공에 대한 문제를 다룬다. 스타일 전이를 위한 광범위한 초-매개변수 설정에 따른 실험 결과에 대한 고찰을 바탕으로 스타일 전이 결과의 안정성 및 다양성에 대한 문제를 정의하고, 이러한 문제를 해결하기 위한 부분 손실 정규화 방법을 제안한다. 제안된 정규화 방식을 이용한 스타일 전이는 입력 영상의 특징에 상관없이 초-매개변수 설정을 통해 동일 수준의 스타일 전이 정도를 조절할 수 있을 뿐 아니라, 스타일 손실을 정의하는 계층 별 가중치 설정의 조절을 통해 기존 방식과 달리 보다 다양한 스타일 전이 결과를 제공하며, 입력 영상의 해상도 차이에 대해 보다 안정적인 스타일 전이 결과를 제공하는 특징을 가진다.

시 공간 정규화를 통한 딥 러닝 기반의 3D 제스처 인식 (Deep Learning Based 3D Gesture Recognition Using Spatio-Temporal Normalization)

  • 채지훈;강수명;김해성;이준재
    • 한국멀티미디어학회논문지
    • /
    • 제21권5호
    • /
    • pp.626-637
    • /
    • 2018
  • Human exchanges information not only through words, but also through body gesture or hand gesture. And they can be used to build effective interfaces in mobile, virtual reality, and augmented reality. The past 2D gesture recognition research had information loss caused by projecting 3D information in 2D. Since the recognition of the gesture in 3D is higher than 2D space in terms of recognition range, the complexity of gesture recognition increases. In this paper, we proposed a real-time gesture recognition deep learning model and application in 3D space using deep learning technique. First, in order to recognize the gesture in the 3D space, the data collection is performed using the unity game engine to construct and acquire data. Second, input vector normalization for learning 3D gesture recognition model is processed based on deep learning. Thirdly, the SELU(Scaled Exponential Linear Unit) function is applied to the neural network's active function for faster learning and better recognition performance. The proposed system is expected to be applicable to various fields such as rehabilitation cares, game applications, and virtual reality.

Binary Hashing CNN Features for Action Recognition

  • Li, Weisheng;Feng, Chen;Xiao, Bin;Chen, Yanquan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권9호
    • /
    • pp.4412-4428
    • /
    • 2018
  • The purpose of this work is to solve the problem of representing an entire video using Convolutional Neural Network (CNN) features for human action recognition. Recently, due to insufficient GPU memory, it has been difficult to take the whole video as the input of the CNN for end-to-end learning. A typical method is to use sampled video frames as inputs and corresponding labels as supervision. One major issue of this popular approach is that the local samples may not contain the information indicated by the global labels and sufficient motion information. To address this issue, we propose a binary hashing method to enhance the local feature extractors. First, we extract the local features and aggregate them into global features using maximum/minimum pooling. Second, we use the binary hashing method to capture the motion features. Finally, we concatenate the hashing features with global features using different normalization methods to train the classifier. Experimental results on the JHMDB and MPII-Cooking datasets show that, for these new local features, binary hashing mapping on the sparsely sampled features led to significant performance improvements.

Multichannel Convolution Neural Network Classification for the Detection of Histological Pattern in Prostate Biopsy Images

  • Bhattacharjee, Subrata;Prakash, Deekshitha;Kim, Cho-Hee;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제23권12호
    • /
    • pp.1486-1495
    • /
    • 2020
  • The analysis of digital microscopy images plays a vital role in computer-aided diagnosis (CAD) and prognosis. The main purpose of this paper is to develop a machine learning technique to predict the histological grades in prostate biopsy. To perform a multiclass classification, an AI-based deep learning algorithm, a multichannel convolutional neural network (MCCNN) was developed by connecting layers with artificial neurons inspired by the human brain system. The histological grades that were used for the analysis are benign, grade 3, grade 4, and grade 5. The proposed approach aims to classify multiple patterns of images extracted from the whole slide image (WSI) of a prostate biopsy based on the Gleason grading system. The Multichannel Convolution Neural Network (MCCNN) model takes three input channels (Red, Green, and Blue) to extract the computational features from each channel and concatenate them for multiclass classification. Stain normalization was carried out for each histological grade to standardize the intensity and contrast level in the image. The proposed model has been trained, validated, and tested with the histopathological images and has achieved an average accuracy of 96.4%, 94.6%, and 95.1%, respectively.

다중 비디오카메라에서 색 정보를 이용한 특정 이동물체 추적 알고리듬 (The Interesting Moving Objects Tracking Algorithm using Color Informations on Multi-Video Camera)

  • 신창훈;이주신
    • 정보처리학회논문지B
    • /
    • 제11B권3호
    • /
    • pp.267-274
    • /
    • 2004
  • 본 논문은 다중 비디오카메라에서 색 정보를 이용한 특정 이동물체 추적 이동물체 추적 알고리듬을 제안한다. 제안된 방법은 다중 비디오카메라로부터 입력되는 영상의 RGB 칼라 좌표계를 HSI 칼라 좌표계로 변환한 후, 영상의 색조 영역만을 가지고 배경영상과 물체가 존재하는 영상에서 차영상 기법과 가산투영 기법을 사용하여 이동물체를 검출한다. 검출된 이동물체 영역의 색조는 0도부터 360도 사이에서 24단계로 정규화 된다. 정규화된 이동물체의 색조 분포도를 구한 후, 가장 높은 분포를 갖는 3개의 정규화 레벨과 3개의 정규화 레벨 사이의 간격을 이동물체의 특징파라미터로 사용하였다. 각 카메라간의 이동물체 동일성 관별은 이동물체 특징파라미터를 가지고 판별하고, 추적 감시하였다. 제안된 방법의 타당성을 검토하기 위하여 실내에 각기 다른 장소에 4대의 카메라를 각각 설치하여 이동물체의 대상을 사람으로 놓고, 특정사람을 감시한 결과 각 카메라에서 검출된 특정사람의 색조분포도 변화는 10%내를 유지함을 보였고, 특징 파라미터로 4대의 카메라에서 특정사람이 자동 추적감시 됨을 확인하였다.

CTR 예측을 위한 비전 트랜스포머 활용에 관한 연구 (A Study on Utilization of Vision Transformer for CTR Prediction)

  • 김태석;김석훈;임광혁
    • 지식경영연구
    • /
    • 제22권4호
    • /
    • pp.27-40
    • /
    • 2021
  • Click-Through Rate(CTR) 예측은 추천시스템에서 후보 항목의 순위를 결정하고 높은 순위의 항목들을 추천하여 고객의 정보 과부하를 줄임과 동시에 판매 촉진을 통한 수익 극대화를 달성할 수 있는 핵심 기능이다. 자연어 처리와 이미지 분류 분야는 심층신경망(deep neural network)의 활용을 통한 괄목한 성장을 하고 있다. 최근 이 분야의 주류를 이루던 모델과 차별화된 어텐션(attention) 메커니즘 기반의 트랜스포머(transformer) 모델이 제안되어 state-of-the-art를 달성하였다. 본 연구에서는 CTR 예측을 위한 트랜스포머 기반 모델의 성능 향상 방안을 제시한다. 자연어와 이미지 데이터와는 다른 이산적(discrete)이며 범주적(categorical)인 CTR 데이터 특성이 모델 성능에 미치는 영향력을 분석하기 위해 임베딩의 일반화(regularization)와 트랜스포머의 정규화(normalization)에 관한 실험을 수행한다. 실험 결과에 따르면, CTR 데이터 입력 처리를 위한 임베딩 과정에서 L2 일반화의 적용과 트랜스포머 모델의 기본 정규화 방법인 레이어 정규화 대신 배치 정규화를 적용할 때 예측 성능이 크게 향상됨을 확인하였다.