• Title/Summary/Keyword: Input Data

Search Result 8,363, Processing Time 0.037 seconds

Soil Moisture Modelling at the Topsoil of a Hillslope in the Gwangneung National Arboretum Using a Transfer Function (전이함수를 통한 광릉 산림 유역의 토양수분 모델링)

  • Choi, Kyung-Moon;Kim, Sang-Hyun;Son, Mi-Na;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.10 no.2
    • /
    • pp.35-46
    • /
    • 2008
  • Soil moisture is one of the important components in hydrological processes and also controls the subsurface flow mechanism at a hillslope scale. In this study, time series of soil moisture were measured at a hillslope located in Gwangneung National Arboretum, Korea using a multiplex Time Domain Reflectometry(TDR) system measuring soil moisture with bi-hour interval. The Box-Jenkins transfer function and noise model was used to estimate spatial distributions of soil moisture histories between May and September, 2007. Rainfall was used as an input parameter and soil moisture at 10 cm depth was used as an output parameter in the model. The modeling process consisted of a series of procedures(e.g., data pretreatment, model identification, parameter estimation, and diagnostic checking of selected models), and the relationship between soil moisture and rainfall was assessed. The results indicated that the patterns of soil moisture at different locations and slopes along the hillslope were similar with those of rainfall during the measurment period. However, the spatial distribution of soil moisture was not associated with the slope of the monitored location. This implies that the variability of the soil moisture was determined more by rainfall than by the slope of the site. Due to the influence of vegetation activity on soil moisture flow in spring, the soil moisture prediction in spring showed higher variability and complexity than that in early autumn did. This indicates that vegetation activity is an important factor explaining the patterns of soil moisture for an upland forested hillslope.

Development of a Chinese cabbage model using Microsoft Excel/VBA (엑셀/VBA를 이용한 배추 모형 제작)

  • Moon, Kyung Hwan;Song, Eun Young;Wi, Seung Hwan;Oh, Sooja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.228-232
    • /
    • 2018
  • Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

A Study on Finned Tube Used in Turbo Refrigerator( I ) -for Condensation Hear Transfer- (터보 냉동기용 핀튜브에 관한 연구 ( I ) - 응축 열전달에 관하여 -)

  • Cho, Dong-Hyun;Han, Kyu-Il;Kim, Si-Young
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.5 no.1
    • /
    • pp.31-44
    • /
    • 1993
  • Through the early 1900's, the evolution of the surface condenser was closely tied to the development of steam engine and the turbine. As the chemical and petroleum industries evolved in the 1900's, the use of surface condensers in many different processes. Today, industry uses condensers in many shapes and sizes. The actual condensation process occurs on the outside surface of tubes. The nature of this surface geometry affects the condenser's heat transfer performance. The first condensers were built with plain tubes. As tube manufacturing techniques advanced, manufacturers started making tubes with integral fins. In the 1940's, fin densities were limited to about 600 to 700 fins per meter(fpm) because of manufacturing procedure. Today new manufacturing techniques allow production of tubes with fin densities ranging from 750 to 1600 fpm. The integral-fin tubes investigated in this paper are nominally 19 mm diameter. Eight tubes have been used with trapezodially shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. For comparison, tests are made using a plain tube having the same inside diameter and an outside diameter equal to that at the root of the fins for the finned tubes. Betty and Katz's theoretical modelis is used to predict the R-11 condensation coefficient on horizontal integral-fin tubes having 748, 1024 and 1299 fpm. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken at steady state. The observed heat transfer enhancement for the finned and grooved tubes significantly exceeded that to be expected on grounds of increased area. For the eight fin tubes and one plain tube tested, the best performance has been obtained with a tube having a fin density of 1299 fpm, and a fin bight of 1.2mm and 30 grooves.

  • PDF

Development of distributed inundation routing method using SIMOD method (SIMOD 기법을 이용한 분포형 침수 추적 기법 개발)

  • Lee, Suk Ho;Lee, Dong Seop;Kim, Jin Man;Kim, Byung Sik
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.7
    • /
    • pp.579-588
    • /
    • 2016
  • Changes in precipitation due to climate change is made to induce the local and intensive rainfall, it is increasing damage caused by inland inundation. Therefore, it requires a technique for predicting damage caused by flooding. In this study, in order to determine whether this flood inundated by any route when the levee was destroyed, Which can simulate the path of the flood inundation model was developed for the SIMOD (Simplified Inundation MODel). Multi Direction Method (MDM) for differential distributing the adjacent cells by using the slope and Flat-Water Assumption (FWA)-If more than one level higher in the cell adjacent to the cell level is the lowest altitude that increases the water level is equal to the adjacent cells- were applied For the evaluation of the model by setting the flooding scenarios were estimated hourly range from the target area. SIMOD model can significantly reduce simulation time because they use a simple input data of topography (DEM) and inflow flood. Since it is possible to predict results within minutes, if you can only identify inflow flood through the runoff model or levee collapse model. Therefore, it could be used to establish an evacuation plan due to flooding, such as EAP (Emergency Action Plan).

Development and Comparative Analysis of Mapping Quality Prediction Technology Using Orientation Parameters Processed in UAV Software (무인기 소프트웨어에서 처리된 표정요소를 이용한 도화품질 예측기술 개발 및 비교분석)

  • Lim, Pyung-Chae;Son, Jonghwan;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_1
    • /
    • pp.895-905
    • /
    • 2019
  • Commercial Unmanned Aerial Vehicle (UAV) image processing software products currently used in the industry provides camera calibration information and block bundle adjustment accuracy. However, they provide mapping accuracy achievable out of input UAV images. In this paper, the quality of mapping is calculated by using orientation parameters from UAV image processing software. We apply the orientation parameters to the digital photogrammetric workstation (DPW) for verifying the reliability of the mapping quality calculated. The quality of mapping accuracy was defined as three types of accuracy: Y-parallax, relative model and absolute model accuracy. The Y-parallax is an accuracy capable of determining stereo viewing between stereo pairs. The Relative model accuracy is the relative bundle adjustment accuracy between stereo pairs on the model coordinates system. The absolute model accuracy is the bundle adjustment accuracy on the absolute coordinate system. For the experimental data, we used 723 images of GSD 5 cm obtained from the rotary wing UAV over an urban area and analyzed the accuracy of mapping quality. The quality of the relative model accuracy predicted by the proposed technique and the maximum error observed from the DPW showed precise results with less than 0.11 m. Similarly, the maximum error of the absolute model accuracy predicted by the proposed technique was less than 0.16 m.

Spatio-temporal Distributions of Macrobenthic Community on Subtidal Area around Mokpo, Korea (목포 주변 해역 조하대 저서동물 군집의 시 ${\cdot}$ 공간적 분포)

  • Lee, Jae-Hac;Choi, Jin-Woo;Park, Heung-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.2
    • /
    • pp.169-176
    • /
    • 2000
  • This study was carried out to clarify the spatial and temporal patterns of macrobenthic assemblages on the subtidal area around Mokpo, southwest of Korea. A total of 238 species and 663 ind./$m^{2}$ were collected. Polychaetes were the most abundant faunal group that comprised 88 species and had a mean density of 389 ind./$m^{2}$. In the semi-enclosed Youngsan River estuarine bay and neighbouring Mokpo Port area were composed of fine sediments with high organic content, and revealed large seasonal variations in the salinity of surface water and bottom dissolved oxygen in contrast to little seasonal changes in those parameters in the outer area. The study area was classified into four station groups by the cluster analysis; the harbor area, the offshore area, and the inner and outer estuarine bay. Two estuarine bay areas showed different species composition; the dominant species of inner bay were Tharyx sp., Poecilochaetus johnsoni, Heteromastus filiformis and other opportunistic species whereas those in the outer bay were Ruditapes philippinarum, Corophium sinense. From the environmental data and species composition of benthic community, the inner bay was characterized to have unstable benthic faunal assemblages, especially under the seasonal disturbance and receiving large amount of organic matter input and intermittant discharge of fresh water. The coastal developments around Mokpo city also seem to have stressed the subtidal communities spatio-temporally.

  • PDF

Sediment Properties and Long-term Bed Change of Munsancheon (문산천의 유사특성 및 장기하상변동 예측)

  • Lee, Jae-Geun;Ahn, Jae-Hyun
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.329-341
    • /
    • 2011
  • This study was conducted with the national river, Munsancheon, which is located in Paju-si, Gyeonggi-do. The sediment discharge of Munsancheon was directly measured to analyze the sediment characteristics, and the results were used in the numerical model to predict the long-term river bed variation. The flow-total sediment discharge relation was derived using the measured total sediment discharge, and the results were compared with the total sediment discharge that was calculated using the existing prediction formula to derive a proper sediment discharge prediction method. In the actual measurements, the total annual sediment discharge was 5,478 ton/year, and the specific sediment discharge was 29.23 ton/$km^2$/year. The Ackers & White formula resulted in the values very close to the actual measurements. With the actual sediment discharge, geographical and hydrologic data as the input variables, HEC-6 and GSTARS models were comparatively analyzed. The test results showed that the HEC-6 model is suitable for the reliable prediction of the long-term river bed variation. Accordingly, the model was used for the long-term river bed variation prediction in this study. In the case of Munsancheon, deposition was continued in the downstream area and erosion occurred in the upstream area on the whole. It was expected that the stream would be stabilized in the river bed condition of 20 years later. The river bed variation was within 1 m, which was at the significance level. In the downstream area that is influenced by tide, however, the accumulation was continuously increasing within the section 2,000-7,000 m from the outlet. It seems that this should be considered in establishing the river management plans.

Influences of Coastal Upwelling and Time Lag on Primary Production in Offshore Waters of Ulleungdo-Dokdo during Spring 2016 (2016년 춘계 울릉도-독도주변해역에서 동해 연안 용승과 시간차에 의한 일차생산력 영향)

  • Baek, Seung Ho;Kim, Yun-Bae
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.2
    • /
    • pp.156-164
    • /
    • 2018
  • In order to investigate the upwelling and island effects following the wind storm events in the East Sea (i.e., Uljin-Ulleungdo-Dokdo line) during spring, we assessed the vertical and horizontal profiles of abiotic and biotic factors, including phytoplankton communities. The assessment was based on the Geostationary Ocean Color Imager (GOCI) and field survey data. A strong south wind occurred on May 3, when the lowest sea level pressure (987.3 hPa) in 2016 was observed. Interestingly, after this event, huge blooms of phytoplankton were observed on May 12 along the East Korean Warm Current (EKWC), including the in the offshore waters of Ulleungdo and Dokdo. Although the diatoms dominated the EKWC area between the Uljin coastal waters and Ulleungdo, the population density of raphidophytes Heterosigma akashiwo was high in the offshore waters of Ulleungdo-Dokdo. Based on the vertical profiles of Chlorophyll-a (Chl. a), the sub-surface Chl. a maximum appeared at 20 m depths between Uljin and Ulluengdo, whereas relatively high Chl. a was distributed equally across the entire water column around the waters of Ulleungdo and Dokdo islands. This implies that the water mixing (i.e., upwelling) at the two islands, that occurred after the strong wind event, may have brought the rapid proliferation of autotrophic algae, with nutrient input, to the euphotic layer. Therefore, we have demonstrated that a strong south wind caused the upwelling event around the south-eastern Korean peninsula, which is one of the most important role in occurring the spring phytoplankton blooms along the EKWC. In addition, the phytoplankton blooms may have potentially influenced the oligotrophic waters with discrete time lags in the vicinity of Ulleungdo and Dokdo. This indicates that the phytoplankton community structure in the offshore waters of Ulleungdo-Dokdo is dependent upon the complicated water masses moving related to meandering of the EKWC.

Development of a Greenhouse Environment Monitoring System using Low-cost Microcontroller and Open-source Software (저비용 개방형 Microcontroller를 사용한 온실 환경 측정 시스템 개발)

  • Cha, Mi-Kyung;Jeon, Youn A;Son, Jung Eek;Chung, Sun-Ok;Cho, Young-Yeol
    • Horticultural Science & Technology
    • /
    • v.34 no.6
    • /
    • pp.860-870
    • /
    • 2016
  • Continuous monitoring of environmental parameters provides farmers with useful information, which can improve the quality and productivity of crops grown in greenhouses. The objective of this study was to develop a greenhouse environment measurement system using a low-cost microcontroller with open-source software. Greenhouse environment parameters measured were air temperature, relative humidity, and carbon dioxide ($CO_2$) concentration. The ranges of the temperature, relative humidity, and $CO_2$ concentration were -40 to $120^{\circ}C$, 0 to 100%, and 0 to 10,000 ppm, respectively. A $128{\times}64$ graphic LCD display was used for real-time monitoring of the greenhouse environments. An Arduino Uno R3 consisted of a USB interface for communicating with a computer, 6 analog inputs, and 14 digital input/output pins. A temperature/relative humidity sensor was connected to digital pins 2 and 3. A $CO_2$ sensor was connected to digital pins 12 and 13. The LCD was connected to digital pin 1 (TX). The sketches were programmed with the Arduino Software (IDE). A measurement system including the Arduino board, sensors, and accessories was developed (totaling $244). Data for the environmental parameters in a venlo-type greenhouse were obtained using this system without any problems. We expect that the low-cost microcontroller using open-source software can be used for monitoring the environments of plastic greenhouses in Korea.

Carbon Dioxide Fixation using Spirulina Platensis NIES 39 in Polyethylene Bag (Spirulina Platensis NIES 39를 이용한 Polyethylene Bag 반응기에서의 이산화탄소 고정화)

  • Kim, Young-Min;Kim, Ji-Youn;Lee, Sung-Mok;Ha, Jong-Myung;Kwon, Tae-Ho;Lee, Jae-Hwa
    • Applied Chemistry for Engineering
    • /
    • v.21 no.3
    • /
    • pp.272-277
    • /
    • 2010
  • To replace current expensive photobioreactor, this study was conducted to develop low-cost photobioreactor made of polyethylene bag. In previous study, optimal culture conditions of Spirulina platensis NIES 39 have been established, and based on these, the study of biological carbon dioxide fixation has been conducted. The maximum growth was the biomass 2.677 g/L at conditions of 10% $CO_2$, 0.1 vvm. It was shown that $F_{CO_2}$ was 4.056 g $CO_2$/L and $R_{CO_2}$ was 0.312 g $CO_2$/L/day. But, compared with the data at conditions of 5% $CO_2$, 0.1 vvm, $FE_{CO_2}$ was shown 52.372% which is half of it. Regarding the effect of $CO_2$ following illumination, the growth revealed that the input conditions, for 10 min per 3 h, were excellent in the light. $CO_2$ in absent light. $CO_2$ concentration and flow rate were 5% $CO_2$, 0.1 vvm, respectively. Finally, the addition of $CO_2$ was ineffective in the absence of light.