This study proposes bankruptcy prediction model using fuzzy neural networks. Neural networks offer preeminent learning ability but they are often confronted with the inconsistent and unpredictable performance for noisy financial data. The existence of continuous data and large amounts of records may pose a challenging task to explicit concepts extraction from the raw data due to the huge data space determined by continuous input variables. The attempt to solve this problem is to transform each input variable in a way which may make it easier fur neural network to develop a predictive relationship. One of the methods selected for this is to map each continuous input variable to a series of overlapping fuzzy sets. Appropriately transforming each of the inputs into overlapping fuzzy membership sets provides an isomorphic mapping of the data to properly constructed membership values, and as such, no information is lost. In addition, it is easier far neural network to identify and model high-order interactions when the data is transformed in this way. Experimental results show that fuzzy neural network outperforms conventional neural network for the prediction of corporate bankruptcy.
Much research for spatial join has been extensively studied over the last decade. In this paper, we focus on the filtering step of candidate objects for spatial join operations on the input tables that none of the inputs is indexed. In this case, many algorithms has presented and showed excellent performance over most spatial data. However, if data sets of input table for the spatial join ale skewed, the join performance is dramatically degraded. Also, little research on solving the problem in the presence of skewed data has been attempted. Therefore, we propose a spatial hash strip join (SHSJ) algorithm that combines properties of the existing spatial hash join (SHJ) algorithm based on spatial partition for input data set's distribution and SSSJ algorithm. Finally, in order to show SHSJ the outperform in uniform/skew cases, we experiment SHSJ using the Tiger/line data sets and compare it with the SHJ algorithm.
The Journal of the Korea institute of electronic communication sciences
/
v.9
no.12
/
pp.1345-1352
/
2014
Bus architecture of SoC has been replaced by NoC in recent years. Noc uses the multi-clock domains to transmit and receive data between neighbor network interfaces and they have same frequency, but a phase difference because of clock skew. So a synchronizer is used for a mesochronous frequency in interconnection between network interfaces. In this paper the metastability is defined and analyzed in a D latch and a D flip-flop to search the possibilities that data can be lost in the process of sending and receiving data between interconnects when a local frequency and a transmitted frequency have a phase difference. 180nm CMOS model parameter and 1GHz are used to simulate them in HSpice. The simulation results show that the metastability happens in a latch and a flip-flop when input data change near the clock edges and there are intermediate states for a longer time as input data change closer at the clock edge. And the next stage can lose input data depending on environmental conditions such as temperature, processing variations, power supply, etc. The simulation results are very useful to design a mescochronous synchronizer for NoC.
Journal of the Institute of Convergence Signal Processing
/
v.20
no.4
/
pp.205-211
/
2019
Steganalysis is a technique that aims to detect and recover data hidden by steganography. Steganalytic methods detect hidden data by analyzing visual and statistical distortions caused during data embedding. However, for recovering the hidden data, they need to know which steganographic methods the hidden data has been embedded by. Therefore, we propose a hierarchical convolutional neural network (CNN) structure that identifies a steganographic method applied to an input image through multi-level classification. We trained four base CNNs (each is a binary classifier that determines whether or not a steganographic method has been applied to an input image or which of two different steganographic methods has been applied to an input image) and connected them hierarchically. Experimental results demonstrate that the proposed hierarchical CNN structure can identify four different steganographic methods (LSB, PVD, WOW, and UNIWARD) with an accuracy of 79%.
Journal of the Korean Data and Information Science Society
/
v.23
no.2
/
pp.299-307
/
2012
Data mining is a method of searching for an interesting relationship among items in a given database. The decision tree is a typical algorithm of data mining. The decision tree is the method that classifies or predicts a group as some subgroups. In general, when researchers create a decision tree model, the generated model can be complicated by the standard of model creation and the number of input variables. In particular, if the decision trees have a large number of input variables in a model, the generated models can be complex and difficult to analyze model. When creating the decision tree model, if there are marginally conditional variables (intervening variables, external variables) in the input variables, it is not directly relevant. In this study, we suggest the method of creating a decision tree using marginally conditional variables and apply to actual data to search for efficiency.
International Journal of Advanced Culture Technology
/
v.6
no.4
/
pp.275-283
/
2018
Cancer show distinct pattern of gene expression when it is compared to normal. This difference results malignant characteristic of cancer. Many cancer drugs are targeting this difference so that it can selectively kill cancer cells. One of the recent demand for personalized treating cancer is retrieving normal tissue from a patient so that the gene expression difference between cancer and normal be assessed. However, in most clinical situation it is hard to retrieve normal tissue from a patient. This is because biopsy of normal tissues may cause damage to the organ function or a risk of infection or side effect what a patient to take. Thus, there is a challenge to estimate normal cell's gene expression where cancers are originated from without taking additional biopsy. In this paper, we propose in-silico based prediction of normal cell's gene expression from gene expression data of a tumor sample. We call this challenge as reverting the cancer into normal. We divided this challenge into two parts. The first part is making a generator that is able to fool a pretrained discriminator. Pretrained discriminator is from the training of public data (9,601 cancers, 7,240 normals) which shows 0.997 of accuracy to discriminate if a given gene expression pattern is cancer or normal. Deceiving this pretrained discriminator means our method is capable of generating very normal-like gene expression data. The second part of the challenge is to address whether generated normal is similar to true reverse form of the input cancer data. We used, cycle-consistent adversarial networks to approach our challenges, since this network is capable of translating one domain to the other while maintaining original domain's feature and at the same time adding the new domain's feature. We evaluated that, if we put cancer data into a cycle-consistent adversarial network, it could retain most of the information from the input (cancer) and at the same time change the data into normal. We also evaluated if this generated gene expression of normal tissue would be the biological reverse form of the gene expression of cancer used as an input.
Neuromorphic technology is proposed to complement the shortcomings of existing artificial intelligence technology by mimicking the human brain structure and computational process with hardware. NA-IDE has also been proposed for developing neuromorphic hardware-based IoT applications. To implement an SNN model in NA-IDE, commonly used input data must be transformed for use in the SNN model. In this paper, we implemented a neural coding method encoder component that converts image data into a spike train signal and uses it as an SNN input. The decoder component is implemented to convert the output back to image data when the SNN model generates a spike train signal. If the decoder component uses the same parameters as the encoding process, it can generate static data similar to the original data. It can be used in fields such as image-to-image and speech-to-speech to transform and regenerate input data using the proposed encoder and decoder.
Korean Journal of Construction Engineering and Management
/
v.13
no.5
/
pp.94-102
/
2012
Recently, the global financial crisis and the increasing number of unsold houses in Korea are construction companies to assess their efficiency. The most important factor in analyzing the efficiency of a company is the input-output variable. However, systematic stud the core input-output variables, which have a great influence on the efficiency analysis. Thus, to the core input-output variables for efficiency analysis of construction companies, this study propose a model that includes all combinations of input-output variables and to find the core input-output variables using the Data Envelopment Analysis(DEA) model and Principal Component Analysis(PCA). Existing research and theories were studied variables and 21 models were established to measure efficiency. were obtained that the core input and output variable in 2006 the number of employees and sales. For 2008, the core input variable was capital stock and the core output variable was quarterly net profit. For 2010, the core input variable was fixed asset and the core output variable was sales. Through obtaining the variables that greatly affect the efficiency of construction companies, it is considered that individual construction companies will be able to prepare a priority strategy to enhance efficiency.
Ha, Chi-Hong;Cho, Myung-Rae;Chae, Woo-Seok;Park, Young-Bae
Journal of Acupuncture Research
/
v.17
no.1
/
pp.89-105
/
2000
In order to obtain the clinical data on the different effects of the three different methods of indirect moxibustion, moxa-combustion time, peak temperature, average temperature, maximum gradient temperature, average gradient temperature, and moxa-combustion calorie rate of the input period in ARIRANG, JANG, PUNG were measured through this experiment. The results of the experiment were as follows : 1. In the combustion time, during the input period ARIRANG had the longest combustion time followed by PUNG, JANG in a descending order but these were not acknowledged to have significant difference each other. 2. In the peak temperature of the input period, PUNG had the highest temperature followed by ARIRANG, JANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 3. In the average temperature, during the input period, PUNG had the highest temperature followed by JANG, ARIRANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 4. In the maximum gradient temperature, during the input period, PUNG had the highest temperature followed by ARIRANG, JANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 5. In the average gradient temperature, during the input period, PUNG had the highest temperature followed by ARIRANG, JANG in a descending order. ARIRANG and JANG were acknowledged to have significant difference with PUNG. ARIRANG and JANG however were not acknowledged to have difference each other. 6. In the moxa-combustion calorie rate, during the input period, JANG had the highest temperature followed by ARIRANG, PUNG in a descending order. ARIRANG and PUNG were acknowledged to have significant difference with JANG. ARIRANG and PUNG however were not acknowledged to have difference each other.
A blind separation problem in a multiple-input-multiple-output (MIMO) linear time-invariant (LTI) system with finite-alphabet inputs is considered. A discrete-time matrix equation model is used to describe the input-output relation of the system in order to make full use of the advantages of modern digital signal processing techniques. At first, ambiguity problem is investigated. Then, based on the results of the investigation, a new identifiability condition is proposed for the case of an input-data set which is widely used in digital communication. A probability bound such that an arbitrary input matrix satisfies the identifiability condition is derived. Finally, Monte-Carlo simulation is performed to demonstrate the validity of our suggestions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.