• Title/Summary/Keyword: Input Data

Search Result 8,337, Processing Time 0.033 seconds

A Study on ECG Oata Compression Algorithm Using Neural Network (신경회로망을 이용한 심전도 데이터 압축 알고리즘에 관한 연구)

  • 김태국;이명호
    • Journal of Biomedical Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.191-202
    • /
    • 1991
  • This paper describes ECG data compression algorithm using neural network. As a learning method, we use back error propagation algorithm. ECG data compression is performed using learning ability of neural network. CSE database, which is sampled 12bit digitized at 500samp1e/sec, is selected as a input signal. In order to reduce unit number of input layer, we modify sampling ratio 250samples/sec in QRS complex, 125samples/sec in P & T wave respectively. hs a input pattern of neural network, from 35 points backward to 45 points forward sample Points of R peak are used.

  • PDF

A development of input and output interfaces for fuzzy hierarchical analysis

  • Kwack, H.Y.;Lee, S.D.;Son, I.M.
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.181-184
    • /
    • 1996
  • Fuzzy hierarchical analysis(FHA) has the usefulness to allow decision maker's ambiguities when comparing two alternatives. But, for easiuly appling it to a decision problem, the handling its many data and for decision makers much not knowing fuzzy theory are the obstacles to must be overcomed even if the results of final fuzzy weights can be computed by a personal computer. This paper decribes that FHA is revised, and input/output interfaces are developed to collect input data easily and interprete the fuzzy resultlts. Finally, a fuzzy decision process is suggested with them.

  • PDF

Fuzzy control system design by data clustering in the input-output subspaces (입출력 부공간에서의 데이터 클러스터링에 의한 퍼지제어 시스템 설계)

  • 김민수;공성곤
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.12
    • /
    • pp.30-40
    • /
    • 1997
  • This paper presents a design method of fuzzy control systems by clustering the data in the subspace of the input-output produyct space. In the case of servo control, most input-outputdata are concentrated in thye steady-state region, and the the clustering will result in only steady-state fuzzy rules. To overcome this problem, we divide the input-output product space into some subspaces according to the state of input variables. The fuzzy control system designed by the subspace clustering showed good transient response and smaller steady-state error, which is comparable with the reference fuzzy system.

  • PDF

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

Probabilistic Approach on Railway Infrastructure Stability and Settlement Analysis

  • Lee, Sangho
    • International Journal of Railway
    • /
    • v.6 no.2
    • /
    • pp.45-52
    • /
    • 2013
  • Railway construction needs vast soil investigation for its infrastructure foundation designs along the planned railway path to identify the design parameters for stability and serviceability checks. The soil investigation data are usually classified and grouped to decide design input parameters per each construction section and budget estimates. Deterministic design method which most civil engineer and practitioner are familiar with has a clear limitation in construction/maintenance budget control, and occasionally produced overdesigned or unsafe design problems. Instead of using a batch type analysis with predetermined input parameters, data population collected from site soil investigation and design load condition can be statistically estimated for the mean and variance to present the feature of data distribution and optimized with a best fitting probability function. Probabilistic approach using entire feature of design input data enables to predict the worst, best and most probable cases based on identified ranges of soil and load data, which will help railway designer select construction method to save the time and cost. This paper introduces two Monte Carlo simulations actually applied on estimation of retaining wall external stability and long term settlement of organic soil in soil investigation area for a recent high speed railway project.

Comparative Study to Measure the Performance of Commonly Used Machine Learning Algorithms in Diagnosis of Alzheimer's Disease

  • kumar, Neeraj;manhas, Jatinder;sharma, Vinod
    • Journal of Multimedia Information System
    • /
    • v.6 no.2
    • /
    • pp.75-80
    • /
    • 2019
  • In machine learning, the performance of the system depends upon the nature of input data. The efficiency of the system improves when the behavior of the input data changes from un-normalized to normalized form. This paper experimentally demonstrated the performance of KNN, SVM, LDA and NB on Alzheimer's dataset. The dataset undertaken for the study consisted of 3 classes, i.e. Demented, Converted and Non-Demented. Analysis shows that LDA and NB gave an accuracy of 89.83% and 88.19% respectively in both the cases whereas the accuracy of KNN and SVM improved from 46.87% to 82.80% and 53.40% to 88.75% respectively when input data changed from un-normalized to normalized state. From the above results it was observed that KNN and SVM show significant improvement in classification accuracy on normalized data as compared to un-normalized data, whereas LDA and NB reflect no such change in their performance.

Modelling Data Flow in Smart Claim Processing Using Time Invariant Petri Net with Fixed Input Data

  • Amponsah, Anokye Acheampong;Adekoya, Adebayo Felix;Weyori, Benjamin Asubam
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.413-423
    • /
    • 2022
  • The NHIS provides free or highly subsidized healthcare to all people by providing financial fortification. However, the financial sustainability of the scheme is threatened by numerous factors. Therefore, this work sought to provide a solution to process claims intelligently. The provided Petri net model demonstrated successful data flow among the various participant. For efficiency, scalability, and performance two main subsystems were modelled and integrated - data input and claims processing subsystems. We provided smart claims processing algorithm that has a simple and efficient error detection method. The complexity of the main algorithm is good but that of the error detection is excellent when compared to literature. Performance indicates that the model output is reachable from input and the token delivery rate is promising.

Quadratic Loss Support Vector Interval Regression Machine for Crisp Input-Output Data

  • Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.2
    • /
    • pp.449-455
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval regression models for crisp input-output data. The proposed method is based on quadratic loss SVM, which implements quadratic programming approach giving more diverse spread coefficients than a linear programming one. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function. Experimental result is then presented which indicate the performance of this algorithm.

  • PDF

Implementation of Communication Unit for KOMPSAT-II (다목적실용위성 2호기의 통신 부호화기 구현)

  • 이상택;이종태;이상규
    • Proceedings of the IEEK Conference
    • /
    • 2003.11c
    • /
    • pp.378-381
    • /
    • 2003
  • The Channel Coding Unit (CCU) is an integral component of Payload Data Transmission System (PDTS) for the Multi-Spectral Camera (MSC) data. The main function of the CCU is channel coding and encryption. CCU has two channels (I & Q) for data processing. The input of CCU is the output of DCSU (Data Compression & Storage Unit). The output of CCU is the input of QTX which modulate data for RF communication. In this paper, there are the overview, short H/W description and operation concept of CCU.

  • PDF

Tension Estimation of Tire using Neural Networks and DOE (신경회로망과 실험계획법을 이용한 타이어의 장력 추정)

  • Lee, Dong-Woo;Cho, Seok-Swoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.814-820
    • /
    • 2011
  • It takes long time in numerical simulation because structural design for tire requires the nonlinear material property. Neural networks has been widely studied to engineering design to reduce numerical computation time. The numbers of hidden layer, hidden layer neuron and training data have been considered as the structural design variables of neural networks. In application of neural networks to optimize design, there are a few studies about arrangement method of input layer neurons. To investigate the effect of input layer neuron arrangement on neural networks, the variables of tire contour design and tension in bead area were assigned to inputs and output for neural networks respectively. Design variables arrangement in input layer were determined by main effect analysis. The number of hidden layer, the number of hidden layer neuron and the number of training data and so on have been considered as the structural design variables of neural networks. In application to optimization design problem of neural networks, there are few studies about arrangement method of input layer neurons. To investigate the effect of arrangement of input neurons on neural network learning tire contour design parameters and tension in bead area were assigned to neural input and output respectively. Design variables arrangement in input layer was determined by main effect analysis.