• Title/Summary/Keyword: Input

Search Result 29,022, Processing Time 0.043 seconds

A Wireless Glove-Based Input Device for Wearable Computers

  • An, Sang-Sup;Park, Kwang-Hyun;Kim, Tae-Hee;Jeon, Jae-Wook;Lee, Sung-Il;Choi, Hyuck-Yeol;Choi, Hoo-Gon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1633-1637
    • /
    • 2003
  • Existing input devices for desktop computers are not suitable for wearable computers because they are neither easy to carry nor convenient to use in a mobile working environment. Different input devices for wearable computers must be developed. In this paper, a wireless glove-based input device for wearable computers is proposed. The proposed input device consists of a pair of chording gloves. Its keys are mounted on the fingers and their chording methods are similar to those of a Braille keyboard. RF (Radio Frequency) and IrDA (Infrared Data Association) modules are used to make the proposed input device wireless. Since the Braille representation for numbers and characters is efficient and has been well established for many languages in the world, the proposed input device may be one of good input devices to computers. Furthermore, since the Braille has been used for visually impaired people, the proposed one can be easily used as an input device to computers for them.

  • PDF

A Study on Input Current Waveform Analysis for Step Up-Down AC-DC Converter of High Power Factor added Electric Isolation (고역률 스텝 업-다운 절연형 AC-DC 컨버터의 입력전류 파형분석에 관한 연구)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Lee, Bong-Seob;Kim, Sang-Hoon
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.34-36
    • /
    • 2008
  • This paper is given a full detail of mathematical analyses of input current for novel active type power factor correction(PFC) AC-DC converter of step up-down added electric isolation. These are compared with harmonics components of input current for a conventional PFC converter of electric isolation type. The proposed PFC converter is constructed in using a new loss-less snubber circuit to achieve a soft switching of control device. Also the proposed converter for discontinuous conduction mode(DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity and the control method is simple. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of a conventional PFC converter. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

  • PDF

A Method of Input Shaper Design Using Virtual Mode for Undamped Vibration Systems (가상모드를 이용한 비감쇠 진동계 입력성형기 설계 방법)

  • Hong, S.W.;Choi, H.S.;Seo, Y.G.;Park, S.W.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.83-90
    • /
    • 2008
  • Input shaping is an efficient tool to eliminate transient and residual vibration caused by motion of mechanical systems. However, the rise time of the systems tends to increase due to the presence of input shapers. This paper is concerned with the rise time reduction when using input shaping. To this end, this paper proposes an input shaper design method for an undamped single mode vibration system using a virtual mode, which is not an actual mode but reflected in the design process. The essence of the proposed method is to design a three-impulse input shaper as if a single mode system has two modes: one actual mode and one virtual mode. The natural frequency of the virtual mode is a design parameter to change the rise time of the system. This paper discusses the performance of the proposed input shapers by simulation.

Computer Input Frequency of Blood Glucose Self Testing in Type 2 Diabetic Patients (유.무선 인터넷을 이용한 제2형 당뇨형환자 가정에서의 혈당 입력)

  • Kim, Hee-Seung
    • Research in Community and Public Health Nursing
    • /
    • v.15 no.1
    • /
    • pp.29-35
    • /
    • 2004
  • Purpose: The purpose of this study was to investigate the computer input frequency of blood glucose self testing in type2 diabetic patients, for three months. Method: 39 participants were recruited from the endocrinology outpatient department of a tertiary care hospital in an urban city. The computer input frequencies were measured by patients' log in and input of http://www.biodang.com. Glycosylated haemoglobin was determined by a high performance liquid chromatography technique and fasting blood glucose was analyzed by the glucose oxidase method. Diabetes knowledge was measured by a 19 item diabetes knowledge test. Results: The computer input frequency of before breakfast blood glucose was 33.5 for three months. The total blood glucose input frequency tended to be lower in female, aged patients, middle school graduates, those who have no spouse and job, those who have no insulin treatment, obese subjects, and hyperglycemia patients, than in their counterparts. The diabetic knowledge was positively correlated with the computer input frequency of blood glucose self testing. Conclusion: An educational program should be developed to increase the computer input frequency of blood glucose self testing in type2 diabetic patients.

  • PDF

Characteistics of a CMOS Differential Input-Stage Using a Source-Coupled Backgate Pair (Source-Coupled Backgate쌍을 이용한 CMOS 차동입력단의 특성)

  • Kang, Wook;Lee, Won-Hyeong;Han, Woo-Jong;Kim, Soo-Won
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.1
    • /
    • pp.40-45
    • /
    • 1991
  • It is well known that the conventional differential source-coupled pair uses gates as its input terminals. This input pair provids a high open-loop gain, a large CMRR, and a good PSRR. For these reasons, the input pair has been used widely as an input stages of the differential amplifiers, but a narrow linear input range of this structurelimits its application in the area of some analog circuit design. A novel CMOS source-coupled backgate pair is proposed in this paper. The bulk of MOSFET is exploited and input devices are biased to operate in ohmic region. With this topology, the backgate pair of the wide linear input range and variable transconductance can be obtained. This backgate input differential stage is realized with the size of W/L=50/25 MOSFETs. The results show the nonlinear error is less than $\gamma$1% over 10V full-scale range for the bias current of 200$\mu$A with 10V single power-supply.

  • PDF

Design and Sensitivity Analysis of Input Shaping Filter in the Z-domain (Z-영역에서 입력성형기의 설계와 민감도 해석)

  • Park, Un-Hwan;Lee, Jae-Won;Im, Byeong-Deok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1854-1862
    • /
    • 2000
  • Input shaping method is to convolute input shaper, which is sequence of impulses, with reference input command not to excite the natural frequency of system. To reduce residual vibration for the ch ange of frequency, the number of impulses should be increased. Until now, amplitudes and time interval of those has been searched from the derivative of residual vibration. However, if time interval of impulses is fixed as the half of vibration period of system, input shaper H(z) in z-domain becomes (I-pz-1)n/K in which increasing n is the mean that robustness for change of parameter is improved. Also, design of many types of input shapers in z-domain is very easy because sensitivity curve is displayed with $\mid$H(z)zn$\mid$$\times$100. In the z-domain, EI(Extra-Insensitive) input shaper could be designed without solving nonlinear simultaneous equations as design in continuous time domain. In addition to, the design possibility of input shaper for a damped system was shown.

Design of Input Filters Considering the Stability of STATCOM Systems

  • Zhao, Guopeng;Liu, Jinjun;Han, Minxiao
    • Journal of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.904-913
    • /
    • 2011
  • Previous publications regarding the design and specifications of input filters for STATCOMs usually deal with the input filter only, and seldom pay any attention to the influence of the input filters on the performance of the STATCOM systems. A detailed analysis of the influences of input filters on the stability of STATCOM systems and the corresponding design considerations are presented in this paper. Three types of input filters, L filters, LC filters, and LCL filters, are examined separately. The influences of the parameters of input filters on system stability are investigated through frequency domain methods. With direct current control taken as the major control strategy for the STATCOMs, the different situations when adopting different current detection points are covered in this analysis. A comparison between LC filters and LCL filters is also presented with optimized filter parameters. Based on the analysis, the phase margin, as one of the design considerations for the different types of input filters under different current detection schemes, is discussed. This leads to filter parameters that are different than those of the traditional design. Hardware experimental results verify the validity of the above analysis and design.

A Study on Input${\cdot}$Output Waveform Solutions and Harmonics Analyses for a Novel PFC Step-up Converter (새로운 PFC 스텝-업 컨버터의 입출력 파형해석 및 고조파분석에 관한 연구)

  • Kwak Dong-Kurl
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.622-628
    • /
    • 2005
  • This paper is given a full detail of mathematical analyses of input current and output voltage for a novel active type power factor correction (PFC) converter. These are compared with harmonics components of input current for a conventional PFC converter. The proposed PFC converter is constructed in using a new loss-less snubber circuit to achieve a soft switching of control device. Also the proposed converter for discontinuous conduction mode (DCM) eliminates the complicated circuit control requirement and reduces the size of components. The input current waveform in the proposed converter is got to be a sinusoidal form of discontinuous pulse in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, input power factor is nearly unity and the control method is simple. Particularly, the stored energy of loss-less snubber capacitor is recovered with input side and increases input current from resonant operation. The result is that input power factor of the proposed converter is higher than that of conventional PFC converter. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

Control of Input Series Output Parallel Connected DC-DC Converters

  • Natarajan, Sirukarumbur Pandurangan;Anandhi, Thangavel Saroja
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.265-270
    • /
    • 2007
  • Equal rating DC-DC converter modules can be connected in series at the input for circuits requiring higher input voltages and in parallel at the output for circuits requiring higher output currents. Since the converter modules may not be practically identical, closed loop control has to ensure that each module equally shares the total input voltage and the load current. A control scheme consisting of a common output voltage loop, individual inner current loops and individual input voltage loops have been designed in this work to achieve input voltage and load current sharing as well as load voltage regulation under supply and load disturbances. The output voltage loop provides the basic reference for the inner current loops, which are also modified by the respective input voltage loops. The average of the converter input voltages, which is dynamically varying, is chosen as the reference for input voltage loops. This choice of reference eliminates interaction among different control loops. Type II compensators and Fuzzy Logic Controllers (FLCs) are designed and compared through MATLAB based simulation and FLC is found to be satisfactory. Hence TMS320F2407A DSP based FLC is implemented and the results are presented which prove the superiority of the FLC developed for this research.

A Study on the Microcontroller Input Port Reduction of IoT Equipments with Mixed Digital and Analog Inputs (디지털과 아날로그 입력이 혼용된 IoT 기기의 마이크로컨트롤러 입력포트 절감에 관한 연구)

  • Lee, Hyun-Chang
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.9
    • /
    • pp.38-43
    • /
    • 2019
  • In this paper, a method of inputting one analog input and two digital switch inputs by using one analog port of microcontroller embedded in IoT device was proposed. In this method, the upper limit and the lower limit of the input voltage range of the analog input port are determined, and the analog input voltage is input to this interval. The digital switches are configured to exceed the boundaries of the upper and lower limits, respectively. To verify the performance of the proposed method, an experimental circuit was constructed and tested using a microcontroller. As a result, all three inputs can be sensed using a single analog port, thus confirming that the three required input ports are reduced to one input port, ie, 33%.