• Title/Summary/Keyword: Inositol

Search Result 411, Processing Time 0.021 seconds

Effect of Subculture on Plant Regeneration in Rice Callus Culture (벼 Callus의 계대배양(繼代培養)이 식물체(植物體) 재분화(再分化)에 미치는 영향(影響))

  • Sohn, Jae Keun;Lee, Seong Mok;Kim, Kyung Min
    • Current Research on Agriculture and Life Sciences
    • /
    • v.9
    • /
    • pp.21-28
    • /
    • 1991
  • The effect of subculture intervals and passages on plant regeneration from seed-derived callus was determined. Regeneration capacity of callus varied with rice cultivars and subculture intervars tested. The callus subcultured every 2 weeks produced more plants than that of 4 weeks. The calli from a Tongil-type rice cultivar, Milyang 23, lost easily their regeneration ability when the calli were subcultured every 2 weeks and 4 weeks. The callus induced from a japonica cultivar, "Yeongdeogbyeo", showed to maintain high frequency(>70%) of plant regeneration when it was subcultured every 2-week intervals. Casein hydrolysate supplemented in callus induction medium enhanced callus growth and its regeneration. High frequency of plant regeneration was obtained from the calli transferred on $N_6$ medium supplemented with kinetin(2mg/1) and NAA(1mg/1). The subcultured calli in the medium supplemented with casein hydrolysate(2 g/1), myo-inositol(200mg/1) and thiamine-HCl(2mg/1) increased the frequency of embryogenic callus formation and plant regeneration.

  • PDF

Molecular and Biochemical Characteristics of ${\beta}$-Propeller Phytase from Marine Pseudomonas sp. BS10-3 and Its Potential Application for Animal Feed Additives

  • Nam, Seung-Jeung;Kim, Young-Ok;Ko, Tea-Kyung;Kang, Jin-Ku;Chun, Kwang-Hoon;Auh, Joong-Hyuck;Lee, Chul-Soon;Lee, In-Kyu;Park, Sunghoon;Oh, Byung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.10
    • /
    • pp.1413-1420
    • /
    • 2014
  • Phytate is an antinutritional factor that impacts the bioavailability of essential minerals such as $Ca^{2+}$, $Mg^{2+}$, $Mn^{2+}$, $Zn^{2+}$, and $Fe^{2+}$ by forming insoluble mineral-phytate salts. These insoluble mineral-phytate salts are hydrolyzed rarely by monogastric animals, because they lack the hydrolyzing phytases and thus excrete the majority of them. The ${\beta}$-propeller phytases (BPPs) hydrolyze these insoluble mineral-phytate salts efficiently. In this study, we cloned a novel BPP gene from a marine Pseudomonas sp. This Pseudomonas BPP gene (PsBPP) had low sequence identity with other known phytases and contained an extra internal repeat domain (residues 24-279) and a typical BPP domain (residues 280-634) at the C-terminus. Structure-based sequence alignment suggested that the N-terminal repeat domain did not possess the active-site residues, whereas the C-terminal BPP domain contained multiple calcium-binding sites, which provide a favorable electrostatic environment for substrate binding and catalytic activity. Thus, we overexpressed the BPP domain from Pseudomonas sp. to potentially hydrolyze insoluble mineral-phytate salts. Purified recombinant PsBPP required $Ca^{2+}$ or $Fe^{2+}$ for phytase activity, indicating that PsBPP hydrolyzes insoluble $Fe^{2+}$-phytate or $Ca^{2+}$-phytate salts. The optimal temperature and pH for the hydrolysis of $Ca^{2+}$-phytate by PsBPP were $50^{\circ}C$ and 6.0, respectively. Biochemical and kinetic studies clearly showed that PsBPP efficiently hydrolyzed $Ca^{2+}$-phytate salts and yielded myo-inositol 2,4,6-trisphosphate and three phosphate groups as final products. Finally, we showed that PsBPP was highly effective for hydrolyzing rice bran with high phytate content. Taken together, our results suggest that PsBPP has great potential in the animal feed industry for reducing phytates.

Production of Reactive Oxygen Species and Nitric Oxide by Anticancer Agents in Rat Polymorphonuclear Leukocytes (항암제에 의한 흰쥐 다형핵백혈구의 활성산소종(reactive oxygen species) 및 산화질소(nitric oxide)의 생성)

  • Kang, Dong-Joon;Song, Seung-Hee;Kim, Cheol-Ho;Lee, Sang-Kil;Kang, Chung-Boo
    • Journal of Veterinary Clinics
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2009
  • The production of reactive oxygen species (ROS) and nitric oxide (NO) by anticancer agents in rat polymorphonuclear leukocytes (PMN) was examined. PMN treated for short term (< or = 4 h) with cyclophosphamide, cisplatin, tamoxifen and doxifluridine, respectively, exhibited an enhanced respiratory burst upon formylmethionylleucy1-phenylalanine (FMLP) stimulation. In the long term (> 4h), the production of ROS was suppressed in a concentration-dependent manner. The production of superoxide anion (${O_2}^-$) from the FMLP-stimulated PMN was enhanced by the treatment (for 1 hr) of cyclophosphamide, cisplatin, tamoxifen and doxifluridine, respectively. While 1 hr-treatment with cyclophosphamide, cisplatin, tamoxifen, and doxifluridine, respectively, suppressed the production of NO from the FMLP-stimulated PMN, while 8 hr-treatment enhanced the production of NO. Neomycin suppressed chemiluminescence in cisplatin-, tamoxifen- and doxifluridine-pretreated PMN, however near suppression of chemiluminescence by ethanol and genistein was observed in PMN pretreated with these agents. Staurosporine and bisindolylmaleimide suppressed chemiluminescence in cisplatin- and doxifluridine- pretreated PMN. Wortmannin has shown a slight suppression in cyclophosphamide-, cisplatin- and tamoxifen-pretreated PMN, but a strong suppression in doxifluridine-pretreated PMN. Methionine strongly suppressed in cyclophosphamide and cisplatin-pretreated PMN. In conclusion, these results indicate that long term treatment of PMN with cisplatin and doxifluridine inhibit respiratory burst through protein kinase C (PKC) translocation, phospholipase C (PLC), D (PLD) and tyrosine phosphorylation kinase (TPK) activation. Tamoxifen inhibits respiratory burst through PLC, PLD, TPK. Cyclophosphamide inhibits respiratory burst through myeloperoxidase (MPO) activity.

Purification and Characterization of Proteins Inhibiting Phospholipase D Activity from Flounder (Paralichthys olivaceus) Brain (넙치 (Paralichthys olivaceus) 뇌로부터 phospholipase D 활성 억제 단백질의 정제 및 특성 규명)

  • SEO Jung-Soo;KIM Eun-Hi;HWAWG Eun-Young;KIM Nam Deuk;KIM Dong Sun;LEE Hyung-Ho;CHUNG Joon-Ki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.4
    • /
    • pp.370-377
    • /
    • 2001
  • Flounder brain cytosol contains protein inhibitors that markedly inhibit the activity of partially purified brain membrane phospholipase D (PLD) which is dependent on phosphatidylinositol 4,5-bisphosphate ($PIP_2$) but insensitive to ADP-ribosylation factor (ARF), The PLD inhibitors have been enriched through several chromatographic steps and characterized with respect to size and mechanism of inhibition. Sequential chromatography of the brain cytosol yielded six inhibitor fractions, Two (IIA and IIB) of six inhibitor fractions showed the $PIP_2$-phosphatase activities. IIA was identified as synaptojanin, a nerve terminal protein that has known to be a member of the inositolpolyphosphate 5-phosphatase family, by immunoblot analysis. IIB showed an apparent molecular mass of 158 kDa by Superose 12 gel filtration chromatography and was immunologically distinct from synaptojanin. IIB hydrolyzed $PIP_2$, yielding only phosphatidylinositol phosphate (PIP) as product, suggesting that IIB hydrolyzes only one phosphate from either the 4- or 5-position of PI (4,5)$P_2$. These studies demonstrate that the existence of multiple $PIP_2$-phosphatases have been implicated in the negative regulation of $PIP_2$-dependent PLD activity within flounder brain.

  • PDF

Increase in Intracellular Calcium is Necessary for RANKL Induction by High Extracellular Calcium

  • Jun, Ji-Hae;Kim, Hyung-Keun;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.30 no.1
    • /
    • pp.9-15
    • /
    • 2005
  • Recently, we reported that high extracellular calcium increased receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) expression via p44/42 mitogen-activated protein kinase (p44/42 MAPK) activation in mouse osteoblasts. However, the mechanism for p44/42 MAPK activation by high extracellular calcium is unclear. In this study, we examined the role of intracellular calcium increase in high extracellular calcium-induced RANKL induction and p44/42 MAPK activation. Primary cultured mouse calvarial osteoblasts were used. RANKL expression was highly induced by 10 mM calcium treatment. Ionomycin, a calcium ionophore, also increased RANKL expression and activated p44/42 MAPK. U0126, an inhibitor of MEK1/2, an upstream activator of p44/42 MAPK, blocked the RANKL induction by both high extracellular calcium and ionomycin. High extracellular calcium increased the phosphorylation of proline-rich tyrosine kinase 2 (Pyk2), one of the known upstream regulators of p44/42 MAPK activation. Bisindolylmaleimide, an inhibitor of protein kinase C, did not block RANKL induction and p44/42 MAPK activation induced by high extracellular calcium. 2-Aminoethoxydiphenyl borate, an inhibitor of inositol 1,4,5-trisphosphate (IP3) receptor, blocked the RANKL induction by high extracellular calcium. It also partially suppressed the activation of Pyk2 and p44/42 MAPK. Cyclosporin A, an inhibitor of calcineurin, also inhibited high calcium-induced RANKL expression in dose dependent manner. However, cyclosporin A did not affect the activation of Pyk2 and p44/42 MAPK by high extracellular calcium treatment. These results suggest that 1) the increase in intracellular calcium via IP3-mediated calcium release is necessary for RANKL induction by high extracellular calcium treatment, 2) Pyk2 activation, but not protein kinase C, following the increase in intracellular calcium might be involved in p44/42 MAPK activation, and 3) calcineurin-NFAT activation by the increase in intracellular calcium is involved in RANKL induction by high extracellular calcium treatment.

Inhibitory Effects of Cordycepin on Platelet Activation via Regulation of Cyclic Adenosine Monophosphate-downstream Pathway

  • Lee, Dong-Ha
    • Biomedical Science Letters
    • /
    • v.23 no.3
    • /
    • pp.251-260
    • /
    • 2017
  • Platelet activation is essential at the sites of vascular injury, which leads to hemostasis through adhesion, aggregation, and secretion process. However, potent and continuous platelet activation may be an important reason of circulatory disorders. Therefore, proper regulation of platelet activation may be an effective treatment for vascular diseases. In this research, inhibitory effects of cordycepin (3'-deoxyadenosine) on platelet activation were determined. As the results, cordycepin increased cAMP and cGMP, which are intracellular $Ca^{2+}$-antagonists. In addition, cordycepin reduced collagen-elevated $[Ca^{2+}]_i$ mobilization, which was increased by a cAMP-dependent protein kinase (PKA) inhibitor (Rp-8-Br-cAMPS), but not a cGMP-protein kinase (PKG) inhibitor (Rp-8-Br-cGMPS). Furthermore, cordycepin increased $IP_3RI$ ($Ser^{1756}$) phosphorylation, indicating inhibition of $IP_3$-mediated $Ca^{2+}$ release from internal store via the $IP_3RI$, which was strongly inhibited by Rp-8-Br-cAMPS, but was not so much inhibited by Rp-8-Br-cGMPS. These results suggest that the reduction of $[Ca^{2+}]_i$ mobilization is caused by the cAMP/A-kinase-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation. In addition, cordycepin increased the phosphorylation of VASP ($Ser^{157}$) known as PKA substrate, but not VASP ($Ser^{239}$) known as PKG substrate. Cordycepin-induced VASP ($Ser^{157}$) phosphorylation was inhibited by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS, and cordycepin inhibited collagen-induced fibrinogen binding to ${\alpha}IIb/{\beta}_3$, which was increased by Rp-8-Br-cAMPS, but was not inhibited by Rp-8-Br-cGMPS. These results suggest that the inhibition of ${\alpha}IIb/{\beta}_3$ activation is caused by the cAMP/A-kinase-dependent VASP ($Ser^{157}$) phosphorylation. In conclusion, these results demonstrate that inhibitory effects of cordycepin on platelet activation were due to inhibition of $[Ca^{2+}]_i$ mobilization through cAMP-dependent $IP_3RI$ ($Ser^{1756}$) phosphorylation and suppression of ${\alpha}IIb/{\beta}_3$ activation through cAMP-dependent VASP ($Ser^{157}$) phosphorylation. These results strongly indicated that cordycepin might have therapeutic or preventive potential for platelet activation-mediated disorders including thrombosis, atherosclerosis, myocardial infarction, or cardiovascular disease.

Involvement of a LiCl-Induced Phosphoprotein in Pigmentation of the Embryonic Zebrafish (Danio rerio) (LiCl에 의해 유도되는 phosphoprotein이 embryonic zebrafish (Danio rerio)의 pigmentation에 미치는 영향)

  • Jin, Eun-Jung;Thibaudeau, Giselle
    • Journal of Life Science
    • /
    • v.18 no.9
    • /
    • pp.1219-1224
    • /
    • 2008
  • The embryonic zebrafish (Danio rerio) is rapidly becoming an important model organism for studies of early events in vertebrate development. Neural crest-derived pigment cell precursors of the embryonic zebrafish give rise to melanophores, xanthophores, and/or iridophores. Cell-signaling mechanisms related to the development of pigmentation and pigment pattern formation remain obscure. In this study, zebrafish embryos were treated with various signaling-related molecules - LiCl (an inositol-phosphatase inhibitor), forskolin (a protein kinase-A activator), a combination of LiCl/forskolin, and LiCl/heparin (an IP3 inhibitor) in order to identify the mechanisms involved in pigmentation. LiCl treatment resulted in ultrastructural and morphological alterations of melanophores. To identify the possible proteins responsible for this ultrastructural and morphological change, phosphorylation patterns in vitro and in vivo were analyzed. LiCl and LiCl/forskolin treatment elicited dramatic increases in the phosphorylation of a 55-kDa protein which was inhibited by heparin treatment. LiCl treatment also induced phosphorylation of a 55-kDa protein in melanophores purified from adult zebrafish. Collectively these results suggest that a LiCl-induced 55-kDa phosphoprotein plays a role in melanophore morphology and ultrastructure and ultimately effects gross pigmentation.

Production of Rhizobium meliloti M14 Inoculum by Semi-continuous Cultivation (반연속식(半連續式) 배양(培養)에 의(依)한 Rhizobium meliloti M14의 균체생산(菌體生産))

  • Choi, Woo Young;Sohn, Jong Rok;Kim, Moon Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.2
    • /
    • pp.322-327
    • /
    • 1984
  • As a basic studies for the laboratory scale production of alfalfa inoculum, Rhizobium meliloti M14 was characterized for its carbon and nitrogen sources, and some parameters for broth cultivation in a chemostat were studied by semi-continuous operation. The result s obtained were as follows. 1. Growth rate of the strain was increased by disaccharides than by monosaccharides tested, and pentoses resulted in poor growth than hexoses. Sugar alcohols including inositol supported the best growth among sugars. 2. Mannitol in the yeast-mannitol-broth was substituted by natural carbon sources such as malt extract or molasses. 3. Ten per cent of fresh yeast water appeared to supply enough amount of growth factor s for the strain, and the effect was equivalent to 0.24 percent of the commercial yeast extract powder. 4. Batch growth of the stain in a chemostat, New Brunswick Micro Ferm 28L, reached in the early stationary growth phase of $5{\sim}7{\times}10^9cells/ml$ after 36 hours of incubation. The culture at this stage was switched to semi-continuous cultivation, and the culture broth of four-fifth of the working volume was recovered every 24 hours when the maximal count was obtained.

  • PDF

Mutant Recombinant Hemoglobin (${\alpha}96Val{\rightarrow}Tyr$) Exhibits Low Oxygen Affinity and High Cooperativity

  • Choi, Jong-Whan;Yeh, Byung-Il;Han, Dong-Pyou;Lee, Hyean-Woo;Sohn, Joon Hyung;Jung, Seun-Ho;Kim, Hyun-Won
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.595-599
    • /
    • 1998
  • To investigate conformational information of a low oxygen affinity recombinant hemoglobin (rHb) containing $96Val{\rightarrow}Trp$ mutation at the ${\alpha}96$ position, we ave produced rHb (${\alpha}96Val{\rightarrow}Phe$) and rHb (${\alpha}96Val{\rightarrow}Tyr$), using the Escherichia coli expression system and site-directed mutagenesis. The oxygen affinity of rHb (${\alpha}96Val{\rightarrow}Phe$) is similar to that of human normal adult hemoglobin (Hb A). However, the oxygen affinity of rHb (${\alpha}96Val{\rightarrow}Tyr$) showed much lower oxygen affinity than Hb A which is similar to that of rHb (${\alpha}96Val{\rightarrow}Tyr$), providing an opportunity as a potential candidate for a hemoglobin-based blood substitute. Both rHb (${\alpha}96Val{\rightarrow}Phe$) and rHb (${\alpha}96Val{\rightarrow}Tyr)$ showed high cooperativity in oxygen binding. IH-NMR spectroscopy shows that both rHb (${\alpha}96Val{\rightarrow}Phe$) and rHb (${\alpha}96Val{\rightarrow}Tyr$) have very similar tertiary structure around the heme pockets and uaternary structure in the ${\alpha}_1/{\beta}_2$ subunit interface ompared to Hb A. The low oxygen affinity of rHb (${\alpha}96Val{\rightarrow}Tyr$) has been suggested to be due to a hydrogen bond caused by an extra hydroxyl group not present in rHb (${\alpha}96Val{\rightarrow}Phe$). However, investigation of the carbonmonoxy form of rHb (${\alpha}96Val{\rightarrow}Phe$) and (${\alpha}96Val{\rightarrow}Try$) in the presence of inositol hexaphosphate at low temperature suggests that low oxygen affinity of (${\alpha}96Val{\rightarrow}Try$) may arise from a mechanism different to that of rHb (${\alpha}96Val{\rightarrow}Trp$).

  • PDF

Phospholipase $A_2$ excreted from the cells of hyperthermophilic microbes (초호열성균이 생성하는 phospholipase $A_2$에 관한 연구)

  • Joh, Yong-Goe;Woo, Hyo-Kyeng;Kim, Yeon-Sim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.263-271
    • /
    • 1999
  • We checked the presence of phospholipase $A_2(PLA)_2$ which could split the ester bond at the position 2 in the glycerol backbone of glycerophospholipids, in the cells of hyperthermophiles of Pyrococcus horikoshii and Sulfolobus acidocaldarius. The results obtained are as follows; (1). Pyrococcus horikoshii cells were grown in obligate anaerobic conditions at $95^{\circ}C$ and they needed sulfur as energy source instead of oxygen, while Sulfolobus acidocaldarius species grew well in the aerobic medium (pH 2.5) containing yeast and sucrose at $75^{\circ}C$. (2). Pyrococcus horikoshii cells produced phospholipase $A_2$ in the cell culture media although this species did not show lipase activity at least in the pH range of 1.5 ${\sim}$ 3.5. Sulfolobus acidocaldarius cells produced lipase hydrolyzing triacylglycerols such as triolein, but did not split any kind of phospholipids used as substates. (3). The compound of 1-decanoyl-2-(p-nitrophenylglutaryl) phosphatidylcholine was not suitable for a substrate in this experiment, though frequently used as a subtrate for checking presence of phospholipase $A_2$, for its decomposi-tion in this experiment. The L-${\alpha}$-phosphatidylcholine-${\beta}$-[N-7-nitrobenz-2-oxa-1, 3-diazol]aminohexanoyl-${\gamma}$-hexadecanoyl labelled with a fluorescent material, did not show any migration of acyl chains in the molecule during the reaction with phospholipase $A_2$ under a hot condition. (4). Phospholipase $A_2$ in the cells of Pyrococcus horikoshii, showed the optimum activity at $pH6.7{\sim}7.2$ and $95{\sim}105^{\circ}C$, respectively, and was activated by addition of calcium chloride solution. Andthe phospholipase $A_2$ specifically hydrolyzed glycero-phospholipids such as phosphatidyl choline, phosphatidyl ethanolamine, phosphatidyl serine and phosphatidyl inositol, but could not split phospholipid containing ether bonds in the molecule such as DL -${\alpha}$-phosphatidylcholine-${\beta}$-palmitoyl-${\gamma}$-O-hexadecyl, DL-${\alpha}$-phosphati- dylcholine-${\beta}$- oleoyl-${\gamma}$-O-hexadecyl, DL-phosphatidylcholine-dihexadecyl.