• Title/Summary/Keyword: Inorganic scale

Search Result 150, Processing Time 0.03 seconds

Soil Treatment by Eco-Friendly Consoildation Soil (친환경 무기계 토양개량 고화제에 의한 해양오염토 처리)

  • Han, Doo Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • Paper sludge ash, blast furnace slag, fine powder quicklime, anhydrous gypsum, and fly ash as the main ingredients were prepared to suit the salty soils of marine soils. The solidification component is a kind of recycled ceramic, and CaO plays an important role in solidification. The neutralization time after solidification was about 2 weeks, and the compressive strength was about 12N/mm2 in the mortar test after one week incubation with standard yarn. This is about 14 times stronger than the solidifying agent used in the metropolitan area. As a result of applying plate load test to saltous marine soils, we obtained the yield load that can pass the large scale even after 5 days. In the uniaxial compressive strength test, shear strength of about 300 kPa was obtained after 5 days. It will be useful for supplementing the soft ground in the area where marine reclamation is much like the Incheon area.

Development of Wastewater Treatment System by Energy-Saving Photocatalyst Using Combination of Solar Light, UV Lamp and $TiO_2$ (태양광/자외선/이산화티타늄($TiO_2$)을 이용한 에너지 절약형 광촉매 반응 처리시스템 개발)

  • 김현용;양원호
    • Journal of Environmental Health Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-61
    • /
    • 2003
  • Pollution purification using titanium dioxide (TiO$_2$) photocatalyst has attracted a great deal of attention with increasing number of relent environmental problems. Currently, the application of TiO$_2$ photocatalyst has been focused on purification and treatment of waste water. However. the use of conventional TiO$_2$ powder photocatalyst results in disadvantage of stirring during the reaction and of separation after the reaction. And the usage of artificial UV lamp has made the cost of photocatalyst treatment system high. Consequently, we herein studied the pilot-scale design to aid in optimization of the energy-saving process for more through development and reactor design by solar light/UV lamp/ TiO$_2$system. In this study, we manufactured the TiO$_2$sol by sol-gel method. According to analysis by XRD, SEM and TEM, characterization of TiO$_2$ sol were nano-size (5-6 nm) and anatase type. Inorganic binder (SiO$_2$) was added to TiO$_2$ lot to be coated for support strongly, and support of ceramic bead was used to lower separation rate that of glass bead The influences were studied of various experimental parameters such as TiO$_2$ quantity, pH, flow rate. additives, pollutants concentration, climate condition and reflection plate by means of reaction time of the main chararteristics of the obtained materials. In water treatment system, variable realtor as solar light/ or UV lamp according to climate condition such as sunny and cloudy days treated the phenol and E-coli(Escherichia coli) effectively.

III-V Tandem, CuInGa(S,Se)2, and Cu2ZnSn(S,Se)4 Compound Semiconductor Thin Film Solar Cells (3-5족 적층형과 CuInGa(S,Se)2 및 Cu2ZnSn(S,Se)4 화합물반도체 박막태양전지)

  • Jeong, Yonkil;Park, Dong-Won;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.526-532
    • /
    • 2015
  • Solar cells with other alternative energies are being importantly recognized related with post-2020 climate change regime formation. In a point of view of materials, solar cells are classified to organic and inorganic solar cells which can provide a plant-scale electricity. In particular, recent studies about compound semiconductor solar cells, such as III-V tandem solar cells, chalcopyrite-series CIGSSe solar cells, and kesterite-series CZTSSe solar cells were rapidly accelerated. In this report, we introduce a research trend and technical issues for the compound semiconductor solar cells.

The removal characteristics of dissolved solid in wastewater during a capacitive deionization process (축전식 탈염공정을 이용한 하수중의 용존염 제거특성 연구)

  • Shin, Kyong-Suk;Yi, Tae-Woo;Cha, Jae-Hwan;Lim, Yoon-Dae;Park, Seung-Kook;Kang, Kyoung-Suk;Song, Eui-Yeol
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.2
    • /
    • pp.151-160
    • /
    • 2014
  • Capacitive deionization(CDI) has many advantages over other desalination technologies due to its low energy consumption, less environmental pollution and relative low fouling potential. The objectives of this study are evaluate the performance of CDI which can be used for dissolved salts removal from sewage. To identify ion selectivity of nitrate and phosphate in multiionic solutions and adsorption/desorption performance related to applied potential, a series of laboratory scale experiments were conducted using a CDI unit cell with activated carbon electrodes. The CDI process was able to achieve more than 75 % TDS and $NO_3{^-}$, $NH_4{^+}$ removals, while phosphate removal was 60.8 % and is inversely related in initial TDS and $HCO_3{^-}$ concentration. In continuous operation, increasing the inner cell pressure and reduction of TDS removal ability were investigated which are caused by inorganic scaling and biofouling. However a relative mild cleaning solution(5 % of citric acid for calcium scaling and 500 mg/L of NaOCl for organic fouling) restored the electrochemical adsorption capacity of the CDI unit to its initial level.

Direct Transfer Printing of Nanomaterials for Future Flexible Electronics

  • Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.3.1-3.1
    • /
    • 2011
  • Over the past decade, the major efforts for lowering the cost of electronics has been devoted to increasing the packaging efficiency of the integrated circuits (ICs), which is defined by the ratio of all devices on system-level board compared to the area of the board, and to working on a larger but cheaper substrates. Especially, in flexible electronics, the latter has been the favorable way along with using novel nanomaterials that have excellent mechanical flexibility and electrical properties as active channel materials and conductive films. Here, the tool for achieving large area patterning is by printing methods. Although diverse printing methods have been investigated to produce highly-aligned structures of the nanomaterials with desired patterns, many require laborious processes that need to be further optimized for practical applications, showing a clear limit to the design of the nanomaterial patterns in a large scale assembly. Here, we demonstrate the alignment of highly ordered and dense silicon (Si) NW arrays to anisotropically etched micro-engraved structures using a simple evaporation process. During evaporation, entropic attraction combined with the internal flow of the NW solution induced the alignment of NWs at the corners of pre-defined structures. The assembly characteristics of the NWs were highly dependent on the polarity of the NW solutions. After complete evaporation, the aligned NW arrays were subsequently transferred onto a flexible substrate with 95% selectivity using a direct gravure printing technique. As proof-of-concept, flexible back-gated NW field effect transistors (FETs) were fabricated. The fabricated FETs had an effective hole mobility of 0.17 $cm2/V{\cdot}s$ and an on/off ratio of ${\sim}1.4{\times}104$. These results demonstrate that our NW gravure printing technique is a simple and effective method that can be used to fabricate high-performance flexible electronics based on inorganic materials.

  • PDF

Highly Sensitive Gas Sensors Based on Nanostructured $TiO_2$ Thin Films

  • Jang, Ho-Won;Mun, Hui-Gyu;Kim, Do-Hong;Sim, Yeong-Seok;Yun, Seok-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.16.1-16.1
    • /
    • 2011
  • $TiO_2$ is a promising material for gas sensors. To achieve high sensitivities, the material should exhibit a large surface-to-volume ratio and possess the high accessibility of the gas molecules to the surface. Accordingly, a wide variety of porous $TiO_2$ nanomaterials synthesized by wet-chemical methods have been reported for gas sensor applications. Nonetheless, achieving the large-area uniformity and comparability with well-established semiconductor production processes of the methods is still challenging. An alternative method is soft-templating which utilizes nanostructured inorganic or organic materials as sacrificial templates for the preparation of porous materials. Fabrication of macroporous $TiO_2$ films and hollow $TiO_2$ tubes by soft-templating and their gas sensing applications have been reported recently. In these porous materials composed of assemblies of individual micro/nanostructures, the form of links or necks between individual micro/nanostructures is a critical factor to determine gas sensing properties of the material. However, a systematic study to clarify the role of links between individual micro/nanostructures in gas sensing properties of a porous metal oxide matrix is thoroughly lacking. In this work, we have demonstrated a fabrication method to prepare highly-ordered, embossed $TiO_2$ films composed of anatase $TiO_2$ hollow hemispheres via soft-templating using polystyrene beads. The form of links between hollow hemispheres could be controlled by $O_2$ plasma etching on the bead templates. This approach reveals the strong correlation of gas sensitivity with the form of the links. Our experimental results highlight that not only the surface-to-volume ratio of an ensemble material composed of individual micro/nanostructures but also the links between individual micro/nanostructures play a critical role in evaluating the sensing properties of the material. In addition to this general finding, the facileness, large-scale productivity, and compatability with semiconductor production process of the proposed fabrication method promise applications of the embossed $TiO_2$ films to high-quality sensors.

  • PDF

Factor Analysis of Type I Osteoporosis and Evaluation on Tuna Bone Powder Compounds through Small Scale Pilot Study (I형 골다공증의 요인분석과 다랑어골분 복합제제의 pilot study를 통한 평가)

  • Chi Gyoo Yang;Kim Young Man
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2004
  • This study was carried out for analyzing pathological and epidemiological factors of osteoporosis and doing pilot test using trial compounds of tuna bone and oriental herbs based on the factors. Osteoporosis is originated from osteoblast, osteoclast, organic and inorganic factors etc. Therefore the pathology of osteoporosis is not simple because the cytokine, growth factors and hormones of the components are various a lot. Taking a view of epidemiological factors of type I osteoporosis, ageㆍmenarcheㆍcholesterolㆍBMI etc. have definite relation to them. So we can approach to aging or consumptive disease in oriental medicine, specifically differential diagnosis of blood depletion with deficiency of qi, deficiency of kidney, deficiency of yin, bony weakness etc. And it should be considered together with rules for maintaining good health or habit concomitantly. Therefore IL1ㆍ6 or TNF αㆍβ are generally used as molecular biological index for osteoblast and osteoclast because the most important index is bone mineral density and strength, but the factors like collagen and noncollagen protein must be accounted as biomarkers. Trial compounds generally showed favorable effects on accompanying subjective symptoms of osteoporosis in the pilot test for menopausal woman. But if she didn't have specific symptoms of osteoporosis there wasn't any specific change. And osteocalcin was increased in case of being under standard level, but wasn't changed in case of normal level. Therefore these trial compounds can be used as a funcdonal diet for type I osteoporotic patients or preventive measures.

Effect of Step-aeration on Inorganic Particle Mixtures Filtration in a Submerged Hollow Fiber Microfiltration Membrane (침지식 중공사 정밀여과 분리막에서 무기혼합입자 여과에 대한 단계별 공기세정의 영향)

  • Choi, Youngkeun;Kim, Hyun-Chul;Noh, Soohong
    • Membrane Journal
    • /
    • v.25 no.3
    • /
    • pp.256-267
    • /
    • 2015
  • The goal is to compare two different aeration strategies for a pilot scale operation of submerged microfiltration with respect to the minimization of membrane fouling. A constant aeration (65 L/min) was examined parallel with a step-wise increase in airflow rate (40 to 65 L/min). The airflow rate was stepped to a higher rate every 5 min and the step-aeration cycles were repeated at regular intervals of 15 min. The comparative filtration runs were conducted with synthetic water containing powdered activated carbon (~10 g/L) and/or kaolin (~20 g/L) at a constant flux of 80 LMH. The extent and mechanisms of fouling in the microfiltration were identified by determining hydraulic resistance to filtration and the fouling reversibility after cleaning. Results showed that the step-aeration effectively alleviated fouling in the microfiltration of synthetic water compared to when using constant aeration. A substantial decrease in fouling was achieved by combining with coagulation using aluminum salts regardless of the aeration strategies. The constant aeration resulted in increased pore blocking likely due to increased accumulation of particles on the surface of membrane.

Enhanced Production of Avermectin B1a with Streptomyces avermitilis by Optimization of Medium and Glucose Feeding (배지 및 유가식 회분배양 최적화에 의한 Streptomyces avermitilist 의 Avermectin B1a 생산성 향상)

  • 이병규;김종균;강희일;이종욱
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.158-163
    • /
    • 2001
  • The effect of phosphate on the production of avermectin B1a was studied. Response surface methodology was applied to optimize the concentration of organic nitrogen sources. The portion of B1b in total avermectins was decreased from 5.8% to 3.0% by the addition of 1.5 g/ι inorganic phosphate to the production medium. Among organic nitrogen sources, soybean meal was the most effective on avermectin biosynthesis. Results showed that B1a productivity was increased by 44.8% in a laboratory scale fermenter cultivation of Streptomyces avermitilis YA99-40 through fed-batch process. A maximal B1a productivity was obtained by repeated 30 and 20 g/ι of glucose feeding at 136 and 206 hour, respectively. The B1a productivity was increased by 86.3% and the proportion of B1a in the total avermectins was improved from 38% to 45% with respect to the control process. These results would be very useful for enhancing productivity of B1a in an up-scaled processes.

  • PDF

Groping the Environmental Education Method based on the Ecological Principles (생태학의 원리에 기초한 환경교육 방법의 모색)

  • 이창석;유영한
    • Hwankyungkyoyuk
    • /
    • v.15 no.2
    • /
    • pp.1-13
    • /
    • 2002
  • The progress of environmental science and technology in the developed countries has been rapid in recent years. Particularly remarkable has been the advancement of various pollutant control measures, which have brought the pollution of inorganic factors such as air and water under control. In contrast, diversity of the ecosphere, of which man is a part, is being steadily impoverished and the biological community is getting unvaryingly uniform. These phenomena were brought about by the expansion of artificial environment such as new industrial complexes, transportation facilities and urban development. Man has constructed uniform and artificial environment, believing in the premise of confrontation with nature, to such a scale that the natural environment and biological community have lost their balance. This will increasingly endanger the soundness of the biotic environment of nature, which constitutes the potential foundation both for the survival environment of man as biological entity and for the development of human civilization. In order to guarantee the soundness of man's body, intelligence and sensitivity as wholesome gene pool on the earth and for the future of man, primarily important environmental education is the understanding of how man can everlasting exist in and with the survival environment. In view of this reality, it is vitally important to create ecologically diverse and well-balanced environment with living materials, i.e., vegetation in order to secure lasting survival environment for man. This task is urgently required in highly artificial environment where non-biological materials have forced the impoverishment of the biological community. Therefore, environmental education for the future should not be totally oriented to technology as that in the past nor it is limited to the medical aspect where well-being of human is the sole object of concern. That is to say, environmental education for the future should be one that provides knowledge that human can understand his place based on the ecological concept and thereby make him to have ethical consciousness that he can control his behavior within the reasonable level for ecological niche who he is located.

  • PDF