• Title/Summary/Keyword: Inorganic chemical fertilizer

Search Result 124, Processing Time 0.03 seconds

Effect of Sewage Sludge Application on Growth of Corn and Chinese Cabbage and Chemical Properties of Soil (하수오니 시용이 옥수수 및 배추 생육과 토양의 화학성 변화에 미치는 영향)

  • Lee, Seung-Heon;Park, Mi-Hyun;Yoo, Sun-Ho;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.463-471
    • /
    • 2000
  • A pot experiment was carried out to find out the effects of the sludge application on corn and Chinese cabbage growth and changes in soil chemical properties with sludges collected from 4 plants at 0, 12.5, 25, 50, and $100Mg\;ha^{-1}$ levels and chemical fertilizer. With the corn experiment, the pot where sludge and chemical fertilizers were treated together, greater amount of sludge resulted in initial growth inhibition. In general, higher sludge treatment rates resulted in better growth in the end, whereas initial growth was inhibited due to high the electrical conductivity of saturated extracts(ECe) for the Chinese cabbage. However, the highest yield among sludge treatments was lower than the yield with chemical fertilizers. While the treatments resulted in chemical changes in soil showing differences of cation exchange capacity, organic matter contents, and nitrogen contents, hardly any changes were detected before and after crops were grown. Inorganic nutrients such as Na, K, Ca and Mg showed similar changes. The ECe in soil saturation extract decreased after crops were grown. The more sludge was treated, the greater was the decrease. The differences of ECe in the soil saturation extract with varying degrees of treatment were also reduced after crops were grown. Available phosphorus content increased during growth. Due to the low nitrogen content in sludge, when nitrogen becomes the determining factor for the amount of sludge treatment, phosphorus buildup resulted from continued application of sludge could be raised. Therefore, it is advisable to use phosphorus, not nitrogen content, in determining the amount of sludge treatment and chemical fertilizer as supplementary sources for nitrogen.

  • PDF

Study of Soil Characteristics on Productivity of Flue-cured Tobacco (Nicotiana tabacum L.) II. Infiuences of Soil Chemical Characteristics on Productivity of Flue-cured Tobacco (황색종 담배의 생산성에 관여하는 토양특성 제2보. 토양의 화학적 특성이 황색종 담배의 생산성에 미치는 영향)

  • Kim, Yong-Yeon;Lee, Jung-Ho;Lee, Yun-Hwan
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.9 no.2
    • /
    • pp.3-9
    • /
    • 1987
  • This study was been conducted to determine chemical characteristics of soils in the major districts cultivating flue-cured tobacco plant. Also native soil productivities were measured by means of bioassay planting tobacco plant without fertilizer at 87 selected lolls through pot and field experiments. Inorganic nutrient in soils affecting the dry weight of tobacco leaves cultivated in the field were investigated. The results obtained are summarized as follows; 1. Among soil chemical characteristics, pH, $NO_3$-N, $NH_4$-N , $P_2O_5$, and Mg Influenced significantly the dry weight of tobacco loaves In pot experiment, whole In the field experiments, pH, $NO_3$-N, $NO_3$-N+$NH_4$-N, and Ca had influence. 2. Correlation coefficients between soil chemical characteristics and dry weight of tobacco leaves were higher in pot experiment than field. The results revealed that soil morphological characteristics might more close influence on dry weight of tobacco leaves than chemical characteristics. 3. For prediction of dry weight (Productivity) of tobacco leaves without fertilizer multiple regression analysis were introduced using troll chemical characteristics. A combination of pH, $NO_3$-N, and Ca was very reliable for prediction of productivity as equation. y=5.02+18.07$x_1$ +2.61$x_2$ +5.36$x_3$ R=0.444** Where $x_1$ : pH, $x_2$ : $NO_3$-N, $x_3$:Ca

  • PDF

Variation Patterns in Concentration of Inorganic Nitrogen from Liquid Grass Fertilizer during Aerobic Incubation (항온 호기 배양 조건에서 잔디 예초물 액비로부터 무기화된 질소의 농도 변화)

  • Lee, Tae-Kyu;Park, Ji-Suk;Lee, Min-Jin;Kim, Jong-Sung;Ro, Hee-Myong;Kim, Sang-Jun;Jeon, Seung-Woo;Seo, Sang-Gug;Kim, Kil-Yong;Lee, Geon-Hyoung;Jeong, Byung-Gon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1120-1125
    • /
    • 2012
  • To assess fertilizer value of an quasi-aerobically fermented liquid clipped-grass fertilizer, aerobic incubation experiment using two texturally contrasting loam (L) and sandy loam (SL) soils was conducted for 60 days to investigate temporal variations in N mineralization pattern of the liquid fertilizer applied. To do so, the quasi-aerobically fermented liquid clipped-grass fertilizer was prepared, applied to each soil at a rate of 200 kg-N $ha^{-1}$ and aerobically $25^{\circ}C$ in the dark. During incubation, soil water content was adjusted to field moisture capacity (-33 kPa of soil matric potential) by adding distilled water as necessary to maintain their initial weights. At desired time of incubation (0, 1, 5, 10, 20, 40, and 60 days after incubation), soil was sampled and analyzed for inorganic nitrogen ($NH_4{^+}$-N and $NO_3{^-}$-N) concentrations, pH, EC, total carbon contents and total nitrogen contents. Concentrations of $NH_4{^+}$-N began to decrease right after incubation for L soils, and 10 days after incubation for SL soils, while those of $NO_3{^-}$-N began to increase onset of $NH_4{^+}$-N disappearance. The results of this study showed that quasi-aerobically fermented liquid clipped-grass fertilizer could serve as an alternative to chemical N fertilizer.

Nutrient Balance during Rice Cultivation in Sandy Soil affected by the Fertilizer Management (사질논에서 벼 재배기간 중 시비방법별 양분수지)

  • Roh, Kee-An;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.155-163
    • /
    • 1999
  • Nutrient balance during rice cultivation in the paddy of a local area under the environmental protection for drinking water supply was investigated. To compare nutrient balance in the paddy soil applied with different types of fertilization, 7 treatments were selected as followings : Recommended level of chemical fertilizers(R), Conventional fertilization(CF), Fresh cow manure(FCM), Cow manure compost(CMC), Straw compost+reduced chemical fertilizer(SCF), Fresh straw+recommended level of fertilizers(FSC), and no fertilization as control(C). Here, FCM, CMC and SCF were applied at the same level of total nitrogen as recommended in R. Rice yield was the highest in the recommendation(R) and fresh cow manure (FCM) treatments with $6,730kg\;ha^{-1}$(index 100), and followed by SCF (index 98), FSC (index 98), CMC(index 94), and CF(index 94). But statistically significant difference was not recognized among treatments except the control. Nitrogen infiltration loss was high in the simple chemical fertilizer treatments with $63kg\;ha^{-1}$ in CF and $58kg\;ha^{-1}$ in R during rice cultivation, respectively. Nitrogen infiltration loss was decreased below half level of chemical fertilizer treatments with cow manure treatments ($23kg\;ha^{-1}$ in FCM and $27kg\;ha^{-1}$ in CMC) and with reducing chemical fertilizer treatment by adding straw compost ($25kg\;ha^{-1}$). Phosphate was not leached during rice cultivation in paddy soil of a fluvial deposit type, in which oxidation horizon was developed broadly under around 15 cm depth of surface soil. Phosphate balance (A-B) was closed to 0 in all treatments except cow manure treatment (CMC), in which it was $+30kg\;ha^{-1}$ and show the possibility of over accumulation of phosphate by continuously replicated application of cow manure compost. Potassium balance was negative value in all but straw recycling treatment (FSC). It means that potassium was continuously supplied from soil minerals, uptaken by plants or eluted out of soil. In conclusion, by substituting inorganic fertilizer for organic fertilizer or reducing application rate of chemical fertilizer through mixing organic fertilizer, it would be possible to achieve the same rice yield as in the recommendation treatment and to decrease nutrient leaching below half level in rice paddy soil.

  • PDF

Chinese Cabbage Growth Effected by Black Vinyl Mulching and Organic Fertilizer Application in Spring Season (유기질비료 시용시 흑색비닐 멀칭이 봄 배추 생육에 미치는 영향)

  • Yun, Hong-Bae;Lee, Jong-Sik;Lee, Ye-Jin;Kim, Rog-Young;Song, Yo-Sung;Han, Seung-Gap;Lee, Yong-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1107-1111
    • /
    • 2011
  • Organic fertilizers application has become a popular alternatives to reduce the dependence on chemical fertilizer in Korean farming systems. In this study, we evaluated the nitrogen (N) use efficiency and growth performance of Chinese cabbage grown by black vinyl mulching after application of organic and chemical fertilizers compared with no-mulching. The treatments included chemical fertilizer alone as control (NPK, N-$P_2O_5-K_2O$ : $320-78-198kg\;ha^{-1}$), organic fertilizer alone (OF100), 70% organic fertilizer and 30% chemical fertilizer (OF70+N30), and 30% organic fertilizer and 70% chemical fertilizer (OF30+N70), which were all applied in the no-mulching plots and in plots with black vinyl mulching. Daily means soil temperature was $2^{\circ}C$ higher in the black vinyl mulched treatments throughout the 54 days compared with no-mulched treatments. OF100 with black vinyl mulching gave highest soil inorganic N content. Also, Chines cabbage yield increased 46% by black vinyl mulched compared with no-mulching in OF100 treatment. Without mulching, N use efficiency was, 44, 26, 29, and 27% in NPK, OF100, OF70+N30, and OF30+N70, respectively. However, black vinyl mulching much more effectively increased N use efficiencies by 56, 55, 51, and 39% in the same treatments in the order as mentioned above. Conclusively, combined organic and chemical fertilizers application with black vinyl mulching could be good practical technique to reduce a amount of used nitrogen because of its greater ability to enhance N use efficiency.

Effects of Liquid Pig Manure Application on Rice Growth and Environment of Paddy Soil (돈분뇨 액비 시용이 벼의 생육 및 논 토양 환경에 미치는 영향)

  • Jeon, Weon-Tai;Park, Hyang-Mi;Park, Chang-Yeong;Park, Ki-Do;Cho, Young-Son;Yun, Eul-Soo;Kang, Ui-Gum
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.333-343
    • /
    • 2003
  • This experiment was carried out to improve the utilization of liquid pig manure (LPM) for rice at the two textures of valley soil in 2000 and 2001. The soil textures were coarse loamy and fine loamy in Sachon and Jisan series, respectively. Treatments consisted of no fertilized plot, chemical fertilized plot, LPM 150%, LPM 100%, LPM 100%+NK (top dressing) 30%, LPM 70%+NK 30%, LPM 50%+NK 50% plot. LPM was applied as basal fertilizer compare to nitrogen of chemical fertilized plot. Total N contents in the LPM were 6.0 and $4.5g\;kg^{-1}$ in 2000 and 2001, respectively. After the experiment, P and K contents of soils were not difference between chemical and LPM application plots. But heavy metal contents in soils were slightly higher in LPM application plots than in chemical fertilized plot. Immediately after LPM application, ammonia gas content was $18mg\;kg^{-1}$ in LPM 150% plot, but it was $3mg\;kg^{-1}$ in LPM 50% plot. Two days after LPM application, ammonia gas content was 3 times higher in coarse loamy than in fine loamy soil. After rotary tillage, ammonia gas was not detected at all LPM treatments. This result suggests that rotary tillage can reduce the nasty smell of LPM quickly. Inorganic nitrogen, $NO_3$ and $NH_4$, contents in water of paddy was higher at coarse loamy soil from rice transplanting to tillering stage. After that season, inorganic nitrogen contents of water were not different according to soil texture and treatments. Content of $NH_4-N$ in soil solution was higher at LPM plots than chemical fertilizer plot. Total nitrogen contents in rice plant after harvesting were higher at chemical fertilization plot than LPM application plot, but K contents showed an opposite tendency. Rice yield was decreased only in LPM plots at two soil textures. But yield was not significantly difference between chemical fertilizer and LPM+top dressing plots at coarse loamy soil and increased 5% at LPM 50%+NK 50% plot at fine loamy soil in 2001.

Development of Organic liquid Fertilizer for leaf Vegetable under Greenhouse (하우스 엽채류를 위한 관비재배용 유기액비 개발)

  • 주선종;손상목;김진한
    • Korean Journal of Organic Agriculture
    • /
    • v.9 no.2
    • /
    • pp.83-99
    • /
    • 2001
  • This experiment was conducted to develop liquid fertilizer for leaf vegetable using the agricultural by-products such as dry chicken dropping, bone meal, rice bran, soybean oil cake and fish meal. Combination of 50% dry chicken dropping, 30% bone meal and 20% rice bran among several combinations of by-products was selected as materials for liquid fertilizer of head lettuce and cabbage. 50kg of materials with combination selected got mixed to 200ι of water, which kept under room temperature in greenhouse. EC and pH of fertilizer was stabilized after 35 days. On the decrease of bad smell during fermentation, addition of materials such as bioceramics, woody vinegar and active charcoal was not effected. And on rapid fermentation, addition of microorganisms and sugar had a little effect, but decreased the content of inorganic nutrients. Fertigation of liquid fertilizer developed on cabbage by dropping made head weight increased by 0.9kg per plant and nitrate content decreased by 276ppm in comparison with chemical fertilizer which was 3.5kg, and 2,426ppm, respectively. By use of organic liquid fertilizer developed in this experiment, yield of cabbage could be more obtained by 26% than in use of chemical fertilizer and income by 24%.

  • PDF

Effect of organic fertilizer application on soil carbon accumulation (유기질비료의 사용이 작물의 생육, 토양화학성 및 토양탄소 축적량에 미치는 영향)

  • Yu Na Lee;Dong Won Lee;Jin Ju Yun;Jae Hong Shim;Sang Ho Jeon;Yun Hae Lee;Soon Ik Kwon;Seong Heon Kim
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.32 no.1
    • /
    • pp.5-11
    • /
    • 2024
  • Objective of this study was to evaluate the effect of organic fertilizer application on yield, soil chemical properties and soil organic carbon (SOC) in Korean cabbage cultural field. The experimental treatments consisted of none fertilizer (NF), NPK (inorganic fertilizer, N-P2O5-K2O : 320-78-198 kg ha-1), Organic fertilizer (OF 50, 100, 150% on application rate of standard 110 kg ha-1 as N, topdressing: 210 kg ha-1 as inorganic fertilizer). In experimental results, the growth characteristics and yields were not significantly different among the treatments. There was no significant difference in soil pH, available phosphate, ammonium nitrogen and exchangeable potassium, while organic matter, electrical conductivity and nitrate nitrogen were increased when organic fertilizer application. Also, SOC was increased with the application of organic fertilizers. These results showed that pre-application of organic fertilizer might be effective in a carbon storage in the field soil cultivating Korean cabbage.

Changes of Chemical Properties and Correlation under No-tillage Silt Loam Soil with Ridge Cultivation of Plastics Film Greenhouse Condition

  • Yang, Seung-Koo;Shin, Gil-Ho;Kim, Hee-Kon;Kim, Hyun-Woo;Choi, Kyung-Ju;Jung, Woo-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.3
    • /
    • pp.170-179
    • /
    • 2015
  • This study was carried out to investigate the sustainable agriculture of no-tillage technique to minimize tillage problems under rain interception green house condition including recycling of the ridge and the furrow for following cultivation in Korea. Chemical properties in soils were investigated at 3-years after cultivation at conventional tillage [CT; 2-years no-tillage (2009-2010) and 1-year (2011) tillage] and no-tillage [NT; 2009-2011] field. Soil pH maintained between 5.8 and 6.0 irrespectively tillage and no-tillage. Salinity (EC), contents of total nitrogen (TN), cation exchange capacity (CEC), and exchangeable cations (K, Ca and Mg) in soil were remarkably higher in CT than in NT treatment. Salinity (EC), contents of OM, TN, CEC, and exchangeable cations in top soil and subsoil indicated higher deviation in CT than NT treatment. Organic matters and inorganic matters in soil were positive (+) correlation. Suppression of pepper growth and increase of yield were observed in no-tillage soil compared with tillage soil. These results indicated that no-tillage technique in crop culture could play an important role with respect to chemical properties in silt loam soil.

Effect of Compost and Gypsum Application on the Chemical Properties and Fertility Status of Saline-Sodic Soil

  • Sarwar, Ghulam;Ibrahim, Muhammad;Tahir, Mukkram Ali;Iftikhar, Yasir;Haider, Muhammad Sajjad;Noor-Us-Sabah, Noor-Us-Sabah;Han, Kyung-Hwa;Ha, Sang-Keun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.510-516
    • /
    • 2011
  • Salt-affected soils are present in Pakistan in significant quantity. This experiment was conducted to assess the effectiveness of compost for reclamation and compare its efficiency with gypsum. For this purpose, various combinations of compost and gypsum were used to evaluate their efficacy for reclamation. A saline-sodic field having $pH_s$ 8.90, $EC_e$ $5.94dS\;m^{-1}$ and SAR $34.5(mmol\;L^{-1})^{1/2}$, SP (saturation percentage) 42.29% and texture Sandy clay loam, gypsum requirement (GR) $8.75Mg\;ha^{-1}$ was selected for this study. The experiment comprised of seven treatments (control, gypsum alone, compost alone and different combinations of compost and gypsum based on soil gypsum requirements). Inorganic and organic amendments (gypsum and compost) were applied to a saline sodic soil. Rice and wheat crops were grown. Soil samples were collected from each treatment after the harvest of both crops and analyzed for chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) and fertility status (organic matter, available phosphorus and potassium contents) of soil. Results of this study revealed that compost and gypsum improved chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) of saline sodic soil to the desired levels. Similarly, all parameters of soil fertility like organic matter, available phosphorus and potassium contents were built up with the application of compost and gypsum.