• Title/Summary/Keyword: Inoculated seedlings

Search Result 208, Processing Time 0.03 seconds

Evaluation of Garlic Germplasm for Resistance to Leaf Blight Caused by Stemphylium vesicarium (마늘 유전자원의 Stemphylium vesicarium에 의한 잎마름병 저항성 평가)

  • Jin Ju Lee;JiWon Han;Hun Kim;Jin-Cheol Kim;Gyung Ja Choi
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.124-130
    • /
    • 2024
  • Leaf blight caused by Stemphylium vesicarium is one of the most important fungal diseases of garlic (Allium sativum L.) worldwide, which results in a reduction of quality and yield. The breeding of resistant cultivars is an efficient approach to decrease the use of chemical fungicides and minimize crop losses. In this study, to find the resistant garlic resources against S. vesicarium, we evaluated the resistance degree of 20 garlic germplasms. To do this, garlic seedlings at four-leaf stage were rubbed with nonabsorbent cotton and then inoculated with spore suspension (3.0×105 spores/ml of potato dextrose broth) of S. vesicarium by spray method. Three to seven days after inoculation, the infected leaf area (%) of garlic seedling was measured. 'Daeseo' and 'Namdo' were included as susceptible and resistant control cultivars, respectively. After 3 to 7 days of incubation, the infected leaf area (%) of garlic seedling was measured. Our results showed that IT245512, IT245528, and IT244068 lines exhibited the highest resistance against S. vesicarium, whereas IT257134 and IT253043 lines were more susceptible than the susceptible cultivar 'Daeseo'. Based on the results, the resistant genetic resources selected in this study can be used a basic material for resistant garlic breeding system against leaf blight.

Evaluation of Cabbage- and Broccoli-genetic Resources for Resistance to Clubroot and Fusarium Wilt (뿌리혹병 및 시들음병에 대한 저항성 양배추와 브로콜리 유전자원 탐색)

  • Lee, Ji Hyun;Jo, Eun Ju;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Jin-Cheol;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.20 no.4
    • /
    • pp.235-244
    • /
    • 2014
  • Clubroot and Fusarium wilt of cole crops (Brassica oleracea L.) are destructive diseases which for many years has brought a decline in quality and large losses in yields all over the world. The breeding of resistant cultivars is an effective approach to reduce the use of chemical fungicides and minimize crop losses. This study was conducted to evaluate the resistance of 60 cabbage (B. oleracea var. capitata) and 6 broccoli (B. oleracea var. italica) lines provided by The RDA-Genebank Information Center to clubroot and Fusarium wilt. To investigate resistance to clubroot, seedlings of the genetic resources were inoculated with Plasmodiophora brassicae by drenching the roots with a mixed spore suspension (1 : 1) of two isolates. Of the tested genetic resources, four cabbage lines were moderately resistant and 'K166220' represented the highest resistance to P. brassicae. The others were susceptible to clubroot. On the other hand, to select resistant plants to Fusarium wilt, the genetic resources were inoculated with Fusarium oxysporum f. sp. conglutinans by dipping the roots in spore suspension of the fungus. Among them, 17 cabbage and 5 broccoli lines were resistant, 16 cabbage lines were moderately resistant, and the others were susceptible to Fusarium wilt. Especially, three cabbage ('IT227115', 'K161791', 'K173350') and two broccoli ('IT227100', 'IT227099') lines were highly resistant to the fungus. We suggest that the resistant genetic resources can be used as a basic material for resistant B. oleracea breeding system against clubroot and Fusarium wilt.

Control of Phythophthora capsici and residual characteristics by drenching of pesticides on tomato in hydroponic culture system (약제 관주처리에 의한 양액재배 토마토의 역병 방제 및 농약잔류 특성)

  • Ihm, Yang-Bin;Lee, Jung-Sup;Kyung, Kee-Sung;Kim, Chan-Sub;Oh, Kyeong-Seok;Jin, Yong-Duk;Lee, Byung-Moo
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.287-292
    • /
    • 2002
  • To establish effective and safe control method against Phytophthora root rot caused by Phytophthora capsici on tomato in hydroponic culture, three pesticides, oxadixyl copper hydroxide 8% WP, metalaxyl copper oxychloride 15% WP, and dimethomorph. dithianon 38% WP at 4 concentration levels were tested on potato dextrose agar medium inoculated with Phytophthora capsici. All pesticides inhibited mycelial growth, but two pesticides of them, metalaxyl copper oxychloride WP and dimethomorph. dithianon WP, were selected as effective pesticides for the efficacy test in a hydroponic culture. Forty days after transplanting of tomato seedlings, 4 ml of sporangia of P. capsici (about 25 sporangi/ml) per plot was inoculated around tomato plant root, and then 5 days after inoculation, the pesticides diluted at 5,000 times were drenched 1, 2 or 3 times per plot on the culture cube at 15 days interval. Fifteen days after drenching, tomato fruits and hydroponic culture solution were sampled for the analysis of pesticide residues. Dimethomorph was detected 0.001 and 0.003 mg/kg in tomato of the plots sprayed 2 and 3 times with dimethomorph dithianon WP of which detection levels were far below compared with 1.0 mg/kg of the Korean MRL of dimethomorph on tomato. Incidences of Phytophthora root rot were $30.5{\sim}50%$ in the plots drenched at 1 or 2 times with metalaxyl.copper oxychloride WP, and $16.7{\sim}25%$ in the plots treated with dimethomorph dithianon WP. However, there was no incidence of Phytophthora root rot in the plots treated at 3 times with both of pesticides, showing no phytotoxic effect. Based on the results, the drenching of these pesticides on the culture cube could be recommended as a very safe and effective control method for Phytophthora root rot in tomato.

Studies on Growth Response and Ectomycorrhizal Identification of Quercus acutissima Seedling Inoculated with Ectomycorrhizal Fungi Isolated in Chonnam Province (전남지방(全南地方)에서 분리(分離)된 외생균근균(外生菌根菌)의 접종(接種)에 의한 상수리나무묘목(苗木)의 생장반응(生長反應)과 균근(菌根)의 분류학적(分類學的) 연구(硏究))

  • Oh, Kwang In;Jung, Nam Chul;Park, Whoa Sig
    • Journal of Korean Society of Forest Science
    • /
    • v.82 no.4
    • /
    • pp.366-380
    • /
    • 1993
  • Quercus acutissima ectomycorrhizae were classified as apical type, linear type, clavate type, diffuse type, pyramidal type, coralloid type, and nodular type. The surface texture of the fungal mantle at the initial stage of mycorrhizal formation was velvety. The surface texture of Pisolithus tinctorius(Pt) mycorrhizae at 30 September was well-developed felty mantle, Yellowish white. Except Pt all mycorrhizae formed by ectomycorrhizal fungi used to experiment were white with felty mantle. Mycorrhizae at the initial stage of mycorrhizae formation were creamy or creamy brown and swelled with thin mantle. Transverse and longitudinal sections showed radially-elongated cortical cell layers and epidermal cell with Hartig net. The transversal wideth of radially-elongated cortical and epidermal cells in the mycorrhizae with thick mantle on 30 September did not different with the mycorrhizae with thin mantle on the initial stage. Pt #250 formed coralloid mycorrizae but Pt KJ-1 did not although they are same species. On the mean length of linear type ectomycorrhizae of Pt KJ-1(2.21mm) was 1.5 times longer than that of Pt #250(1.32mm). The total dry weight of seedlings inoculated with Pt KJ-1, Pt #250, Lycoperdon pedicellatum, Scleroderma verrucosum were significantly heavier than those of suillus granulatus, Laccaria laccata.

  • PDF

Controlling Effect of Agricultural Organic Materials on Phytophthora Blight and Anthracnose in Red Pepper (고추 역병과 탄저병에 대한 친환경유기농자재의 방제 효과)

  • Park, Se-Jung;Kim, Ga-Hye;Kim, A-Hyeong;Lee, Ho-Taek;Gwon, Hyeon-Wook;Kim, Joo-Hyeng;Lee, Kyeong-Hee;Kim, Heung-Tae
    • Research in Plant Disease
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • A total of 20 agricultural organic materials including inorganic compounds, plant oils and plant extracts were used in the study for assessing the control efficacy on pepper diseases. Among inorganic compounds, only copper hydroxide showed inhibitory effect on both Phytophthora capsici causing Phytophthora blight and Colletotrichum acutatum causing anthracnose. Phosphorous acid inhibited the growth of P. capsici on PDA, and Sulfur/quicklime had it on that of C. acutatum. Plant essential oil, rosemary oil, and rapeseed oil among plant oils and plant extract of Japanese apricot/ginkgo nut inhibited the mycelial growth of the two pathogens. In the screening using pepper plant seedlings, the control efficacy on Phytophthora blight in 6-leaf stage of seedling was superior to that in 4-leaf stage of seedling. A protective effect on Phytophthora blight was displayed by copper hydroxide, sulfur/quicklime, water soluble calcium, phosphorous acid, plant essential oil, and cloves extract. When C. acutatum was inoculated by the non-wound method, copper hydroxide and rapeseed oil showed excellent protective activities with control values of 91.3% and 82.6%, respectively. However, copper hydroxide did not show any activity, when C. acutatum was inoculated after wounding pepper fruits. All organic materials never showed the curative effect on Phytophthora blight and anthracnose in pepper seedling assay and fruit assay.

The Effects of Silicate Nitrogen, Phosphorus and Potassium Fertilizers on the Chemical Components of Rice Plants and on the Incidence of Blast Disease of Rice Caused by Pyricularia oryzae Cavara (규산 및 삼요소 시비수준이 도체내 성분함량과 도열병 발생에 미치는 영향)

  • Paik Soo Bong
    • Korean journal of applied entomology
    • /
    • v.14 no.3 s.24
    • /
    • pp.97-109
    • /
    • 1975
  • In an attempt to develop an effective integrated system of controlling blast disease of rice caused by Pyricularia oryzae Cav., the possibility of minimizing the disease incidence by proper application of fertilizers has been investigated. Thus the effect of silicate, nitrogen, phosphorus and potassium fertilizers on the development of blast disease as well as the correlation between the rice varieties an4 strains of P. oryzae were studied. The experiments were made in 1971 and 1973 by artificial inoculation and under natural development of the blast disease on rice plants. The results obtained are summarized as follows. 1. Application of silicate fertilizer resulted in the increase of silicate as well as total sugar and potassium content but decrease of total nitrogen and phosphorus in tile leaf blades of rice plants. 2. The ratios of total C/total N. $ SiO_2/total$ N, and $K_2O/total$ N in leaf blades of rice plants increased by the application of silicate fertilizers. There was high level of negative correlation between the ratios mentioned above and the incidence of rice blast disease. 3. Application of silicate fertilizer reduced the incidence of rice blast disease. 4. The over dressing of nitrogen fertilizer resulted in the increase of total nitrogen and decrease of silicate and total sugar content in leaf blades, thus disposing the rice plants more susceptible to blast disease. 5. Over dressing of phosphorus fertilizer resulted in the increase of both total nitrogen and Phosphorus, and decrease of silicate content in the leaf blades inducing the rice plants to become more susceptible to blast disease. 6. Increased dressing of potash resulted in the increase of silicate content and $K_2O/total$ N ratio but decrease of total nitrogen content in leaf blades. When potassium content is low in the leaf blades of rice plants, the additional dressing of potash to rice plant contributed to the increase of resistance to blast disease. However, there was no significant correlation between additional potassium application and the resistance to blast disease when the potassium content is already high in the leaf blades. 7. When four rice varieties were artificially inoculated with three strains of P. oryzae, the incidence of blast disease was most severe on Pungok, least severe on Jinheung and moderate on Pungkwang and Paltal varieties. 8. Disease incidence was most severe on the second leaf from top and less sever on top and there leaf regardless of the fertilizer application when 5-6 leaf stage rice seedlings of four rice varieties were artificially inoculated with three strains of P. oryzae. 9. The pathogenicity of three strains of P. oryzae was in the order of $P_1,\;P_2,\;and\;P_3$ in their virulence when inoculated to Jinheung, Paltal, Pungkwang varieties but not with Pungok. The interaction between strains of P. oryzae and rice varieties was significant.

  • PDF

Biological Control of Sesame Soil-born Disease by Antifungal Microorganisms (참깨 토양전염성병(土壤傳染性病)의 생물학적방제(生物學的防除))

  • Shin, G.C.;Im, G.J.;Yu, S.H.;Park, J.S.
    • Korean journal of applied entomology
    • /
    • v.26 no.4 s.73
    • /
    • pp.229-237
    • /
    • 1987
  • In order to study the biological control of soil-borne disease of sesame, antagonistic isolates of Trichoderma , Bacillus sand streptomyces to Fusarium oxysporum and Rhizoctonia solani were isolated from the rhizosphere soils of sesame plants and some other habitats. Out of the isolates of microorganisms collected a strain of Trichoderma viride was selected as a biological control agent for the study and its effect on the control of damping-off and the seedling growth of sesame was investigated. The results obtained are as follows: 26 percents of Bacillus spp. isolated from the rhizosphere soil of sesame plants showed antagonism to two pathogenic fungi. Important species were B. Subtilis and B. polymyxa. Streptomyces species isolated from the rhizosphere soils of sesame lysed the cell wall of hyphae and conidia of F. oxysporum and reduced conspicuously the formation of macroconidia and chlamydospores of the fungus. 84 percents of Trichoderma spp. isolated from the rhizosphere soil of sesame plants were antagonistic to F. oxysporum and 60 percents of the isolates were antagonistic to both F. oxysporum and R. solani. Trichoderma viride TV-192 selected from antagonistic isolates of Trichoderma spp. was highly antagonistic to F. oxysporum and soil treatment with the isolate reduced notably damping-off of sesame. T. viride TV-192 showed better growth in crushed rice straw, barley straw and sawdust media than F. oxysporum. Sawdust was selective for the growth of T. viride. Supplementation of wheat bran and mixtures of wheat bran and sawdust inoculated with T. viride TV-192 in the soil reduced remarkably damping-off of sesame by F. oxysporum but high density of the fungus TV-192 caused the inhibition of seed germination and seedling growth of sesame. Inhibitory effects of Trichoderma species on seed germination and seedling growth of sesame were different according to the isolates of the fungus. Normal sesame seedlings on the bed treated with the fungus showed better growth than not treated seedlings.

  • PDF

Development of an Efficient Simple Mass-Screening Method for Resistant Melon to Fusarium oxysporum f. sp. melonis (덩굴쪼김병 저항성 멜론을 위한 효율적이고 간편한 대량 검정법 개발)

  • Lee, Won Jeong;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Heung Tae;Kim, Jin-Cheol;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.201-207
    • /
    • 2015
  • This study was conducted to establish a simple mass-screening method for resistant melon to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (FOM). Root-dipping inoculation method has been used to investigate resistance of melon plants to Fusarium wilt. However, the inoculation method requires a lot of labor and time because of complicate procedure. To develop a simple screening method on melon Fusarium wilt, occurrence of Fusarium wilt on susceptible and resistant cultivars of melon according to inoculation method including root-dipping, soil-drenching, tip, and scalpel methods was investigated. Scalpel and tip methods showed more clear resistant and susceptible responses in the melon cultivars than root-dipping inoculation method, but tip method represented slightly variable disease severity. In contrast, in the case of soil-drenching inoculation method, disease severity of the susceptible cultivars was very low. Thus we selected scalpel method as inoculation method of a simple screening method for melon Fusarium wilt. By using the scalpel inoculation method, resistance degrees of the cultivars according to incubation temperature after inoculation (25 and $30^{\circ}C$) and inoculum concentration ($1{\times}10^6$ and $1{\times}10^7conidia/ml$) were measured. The resistance or susceptibility of the cultivars was hardly affected by all the tested conditions. To look into the effectiveness of scalpel inoculation methods, resistance of 22 commercial melon cultivars to FOM was compare with root-dipping inoculation method. When the melon cultivars were inoculated by scalpel method, resistance responses of all the tested cultivars were clearly distinguished as by root-dipping method. Taken together, we suggest that an efficient simple mass-screening method for resistant melon plant to Fusarium wilt is to sow the seeds of melon in a pot (70 ml of soil) and to grow the seedlings in a greenhouse ($25{\pm}5^{\circ}C$) for 7 days, to cut the root of seedlings with a scalpel and then pour a 10 ml-aliquot of the spore suspension of $1{\times}10^6conidia/ml$ on soil. The infected plants were cultivated in a growth room at 25 to $30^{\circ}C$ for about 3 weeks with 12-hr light a day.

Selection of fungicides to control leaf spot of jujube (Zizyphus jujuba) trees caused by Phoma sp. (Phoma sp.에 의한 대추나무 점무늬병 방제용 살균제 선발)

  • Lee, Bong-Hun;Lim, Tae-Heon;Cha, Byeong-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.40-46
    • /
    • 2000
  • To select the effective fungicides for the control of leaf spot disease of jujube tree (Zizyphus jujuba) caused by Phoma sp., inhibitory effects of 26 fungicides for mycelial growth were investigated at $250{\mu}g\;a.i./m{\ell}$. In the test, eight fungicides were selected and minimum inhibitory concentration (MIC) for mycelial growth and an inhibitory effect for spore germination were investigated. Among the fungicides, myclobutanil, hexaconazole, and triflumizole were excluded in control effect tests because of their relatively high MICs. MICs were ranged $10-50{\mu}g\;a.i./m{\ell}$ for benomyl, carbendazim + kasugamycin (CK), and thiophanate-methyl. triflumizole (TT), and $50-250{\mu}g\;a.i./m{\ell}$ for iprodione + propineb (IT) and iminoctadine-triacelate (IT). However, benomyl and IP showed very low inhibitory effect on conidial germination. When the fungicides were sprayed on the seedlings before the leaves were inoculated with conidial suspension of Phoma sp., the protective values of CK and TT were around 70% at 1,000 ppm and around 90% at 2,000 ppm. The protective values were around 70% at 2,000 ppm (benomyl), 4,000 ppm (IP), and 8,000 ppm (IT). When the fungicides were sprayed after inoculation, benomyl showed the highest curative values of over 90% at 1,000 ppm and the values of CK and TT ranged $70{\sim}80%$ at 1,000 ppm. However, IP and IT had little or no effect on therapy of the disease. IT caused necrotic phytotoxicity on the leaves of jujube seedlings. As results, the best fungicides for the protection of jujube trees from leaf spot disease were CK (2,000 ppm) and TT (2,000 ppm) and for the remedy of the tree, benomyl (1,000 ppm) was the best. Therefore, alternate application of benomyl and CK or TT will be effective in the disease control.

  • PDF

Resistance Degree of Radish Cultivars to Fusarium oxysporum f. sp. raphani according to Several Conditions (발병조건에 따른 무 품종들의 시들음병에 대한 저항성 차이)

  • Baik, Song-Yi;Jang, Kyoung-Soo;Choi, Yong-Ho;Kim, Jin-Cheol;Choi, Gyung-Ja
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.48-52
    • /
    • 2011
  • This study was conducted to establish the efficient screening system for resistant radish to Fusarium oxysporum f. sp. raphani. Five radish cultivars ('Myoungsan', 'Chungdu', 'Jangsaeng', 'Hannongyeorm', and 'Chungsukungjung') showing different degree of resistance to the fungus were selected. And the development of Fusarium wilt of the cultivars according to several conditions such as root wounding, dipping period of roots in spore suspension, inoculum concentration, and incubation temperature to develop the disease was tested. In distinguishing the resistance degree of the radish cultivars to the disease, non-cut roots were more effective than cut roots. And occurrence of Fusarium wilt of the radish plants increased in the proportion to increase of root-dipping period and spore concentration of the fungus. Thus, optimum conditions to differentiate susceptible and resistant cultivars to the disease were root-dipping period of 0.5 hour and spore concentration of $1{\times}10^7\;conidia{\cdot}mL^{-1}$. Disease severity of Fusarium wilt on the cultivars was changed with incubation temperature and the radish seedlings incubated at $25^{\circ}C$ represented the most difference of resistance and susceptibility to Fusarium wilt. From the above results, we suggest that the efficient screening method for resistant radish to Fusarium oxysporum f. sp. raphani would be to dip non-cut roots of fourteen-day-old radish seedlings in spore suspension of $1{\times}10^7\;conidia{\cdot}mL^{-1}$ for 0.5 hour and to transplant the inoculated plants to plastic pots with fertilized soil, and then to incubate the radish plants at a temperature of $25^{\circ}C$ for development of Fusarium wilt.