• Title/Summary/Keyword: Inner behavior

Search Result 612, Processing Time 0.023 seconds

Development of the Odometer System for the Intelligent Pig (인텔리전트 피그를 위한 주행거리계의 개발)

  • Park, S.S.;Kim, D.K.;Yoo, H.R.;Cho, S.H.;Park, D.J.;Koo, S.J.;Rho, Y.W.;Lee, J.G.;Hong, H.S.;Seo, J.W.;Park, C.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.222-227
    • /
    • 2001
  • This paper introduces the spring-mounted odometer system which maintains the correct contact with the pipe wall and measures the distance along the pipe. The odometer wheel is designed to keep contact to the pipelines inner wall and to generate fifty rectangular pulses per one turn(l59.5681mm) during pigging. The pipeline has the defects in various types such as buckles, winkles, cracks, dents, welding point and so on. Specially, girth welding points which exist each 12m of the pipeline, much affects the operational environment of the odometer. The measurement error of the distance along the pipe is accumulated, for the measurement error of wheel's circumference and the pipeline inner environment. So, this paper proposes the method for the error compensation based on the analysis of the odometer's behavior around the girth welding point of pipe. The experimental results show that developed odometer system can be used for the intelligent pig with good performances.

  • PDF

Nonlinear Analysis of Internally Confined Hollow CFT Columns (내부 구속 중공 CFT 기둥의 비선형 해석)

  • Han, Taek-Hee;Won, Deok-Hee;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.439-454
    • /
    • 2011
  • A nonlinear analysis model for internally confined hollow concrete-filled tube (ICH CFT) columns was suggested and was verified by the test results obtained by the previous researchers. The suggested model considered the confining effect and nonlinearity of concrete. The verified results showed that the suggested model was reasonable and reliable for predicting the behavior of an ICH CFT column. Additionally, a simple parametric study was carried out. The strength of concrete, the hollow ratio of a column, and the thickness of an inner tube were selected as parameters affecting the behavior of an ICH CFT column. The analysis results showed that the concrete strength and the thickness of the inner tube affect the axial strength and moment capacity of the column while the hollow ratio affects only its axial strength.

At-Risk Adolescents' Inner Resource Through Resource-Oriented Song Psychotherapy (자원지향 노래심리치료를 통한 위기청소년의 심리적 자원 형성)

  • Yun, Juri;Chong, Hyun Ju
    • Journal of Music and Human Behavior
    • /
    • v.16 no.2
    • /
    • pp.1-25
    • /
    • 2019
  • The purpose of this study was to investigate how inner resources of at-risk adolescents evolved through resource-oriented song psychotherapy (RoSPT). For this study, an RoSPT program was developed based on existing literature. Eight weekly group sessions of the RoSPT program were conducted with 25 adolescents who were under probation of prosecution. After completion of the program, 10 of the adolescents participated in individual interviews about the experience of RoSPT. Transcriptions of the interviews were analyzed via content analysis. The results identified nine types of inner resources that were utilized by the participants: hope/desires, challenge, endurance, sense of achievement, sense of competence, pride, discovering true self, courage, and internal locus of evaluation. The study supports that RoSPT can be applied to enhance inner strength of at-risk adolescents who often lack contextual and relational support. Further studies on qualitative exploration of resource formation can be helpful.

Structural Analysis for Design of Anchor Straps for a Large-Scale LNG Storage Tank with Corner Protection and Inner Tank (코너프로텍션과 내조를 고려한 대용량 LNG 저장탱크 앵커스트랩의 구조설계를 위한 유한요소해석)

  • Jin, Chengzhu;Ha, Sung-Kyu;Kim, Seong-Jong;Lee, Young-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1543-1548
    • /
    • 2011
  • Structural analysis is performed to design anchor straps for a large-scale-liquefied-natural-gas (LNG) storage tank with corner protection and an inner tank by considering structural integrity. Anchor straps made of 9% nickel steel are attached to the inner tank, corner protection, and concrete raft to prevent the failure of the inner tank during both normal and emergency operating conditions. Two finite element (FE) models were analyzed in this study. One is a stand-alone model of the anchor strap, while the other is an extended model of the substructure of the anchor strap, inner tank, and corner protection. Three-dimensional shell elements are used to effectively assess the bending and axial behavior of structures. The Tresca stress values in each part of the two models are calculated for operation under five different load-condition cases: normal operation, leakage of the LNG, hydro test, and two earthquake conditions.

Experimental Study on the Lift-off Behavior of Tone-excited Propane Jet Diffusion flames (음향 가진 된 프로판 확산 화염의 부상 거동에 관한 실험적 연구)

  • Kim, Seung-Gon;Park, Joeng;Kim, Tea-Kwon;Lee, Kee-Man
    • 한국연소학회:학술대회논문집
    • /
    • 2003.05a
    • /
    • pp.65-73
    • /
    • 2003
  • An experimental study on flame lift-off characteristics of propane jet flame highly diluted with nitrogen has been conducted introducing acoustic forcing with a tube resonant frequency. A flame stability curve is attained according to forcing strength and nozzle exit velocity for $N_2$ diluted flames. Flame lift-off behavior with forcing strength and nozzle exit velocity is globally categorized into three; a well premixed behavior caused by a collapsible mixing for large forcing strength, a coexistent behavior of well-premixed and edge flames interacting with well-organized inner fuel vortices for moderate forcing strengths, and edge flame behavior for small forcing strengths. Special focus is concentrated on the coexistent behavior of the flame base in lifted flame since this may give a hint to a possibility which the flame base behaves like a well-mixed premixed flame in highly turbulent lifted flames. It is also shown that the acoustic forcing to self-pulsating laminar lifted flame affects flame lift-off behavior considerably which is closely related to downstream flow velocity, mixture strength, effective fuel Lewis number, and flame stretch.

  • PDF

A 40 Kb Genomic Deletion Including tmie (Transmembrane Inner Ear Protein) Gene Causes Deafness, Circling and Head Tossing in Circling Mice

  • Kyoung In Cho;Jeong Woong Lee;Eun Ju Lee;Sol Ha Hwang;Myoung Ok Kim;Sung Hyun Kim;Jun Hong Park;Boo Kyoung Jung;Hee Chul Kim
    • Proceedings of the KSAR Conference
    • /
    • 2004.06a
    • /
    • pp.226-226
    • /
    • 2004
  • Circling (cir) mouse is a spontaneous mutant in the inner ear that was first reported in Korea. The mutation is transmitted by an autosomal recessive gene with 100 %- penetrance.. Homozygous mice are characterized by head-tossing, bi-directional circling behavior and deafness. Histologicalexamination of the inner ear reveals abnormalities of the region around the organ of Corti, spiral ganglion neurons, and outer hair cells. (omitted)

  • PDF

Proposal of a Simulated Test Method for the Evaluation of Deformation and Failure Characteristics of Pipe Elbows under Cyclic Loads (반복하중 하의 엘보우 변형 및 손상 특성 평가를 위한 모사시험 방법 제안)

  • Kim, Jin Weon;Lee, Dae Young;Park, Heung Bae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • This study proposed a simulated test method using ring specimen to evaluate the deformation and failure characteristics of pipe elbows under a large amplitude cyclic load. The validity of the test method was demonstrated by finite element (FE) analysis of pipe elbow and ring specimen under cyclic loads. The results showed that the proposed test method adequately simulates the distribution of circumferential strain at crown of pipe elbows where cracks occur under cyclic loads and presents the cyclic hardening behavior of pipe elbows. The parametric FE analysis showed that consistent simulated test results could be obtained when the test section of the ring specimen is longer than 1/2 of the inner diameter of the ring specimen and the radius of the inner loading jig is less than 1/4 of the inner diameter of the specimen.

Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels (고강도강 비좌굴 가새의 구조성능 평가)

  • Park, Man Woo;Ju, Young Kyu;Kim, Myeong Han;Kim, Ji Young;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.355-364
    • /
    • 2008
  • The Buckling-Restrained Braces (BRB) has been developed to inhibit buckling and exhibit stable behavior under both tensile and compressive cycles. In this study, an experimental has been conducted by using the strength of its members and loading protocols as parameters to evaluate the structural performance of BRB (without in-filled concrete). Specimens are composed of an inner core and an outer tube with different steel strengths. When high-strength steels were used as inner cores, the ductility of BRB decreasedm and the requirements (Cumulative Plastic Ductility) of the AISC Seismic Provisions were not satisfied. However, when high-strength steels were used as inner cores instead of conventional strength steel cores, the maximum capacity increased significantly and displayed similar performance in total energy dissipation.

Experimental Study of Molten Wood's Metal Jet Breakup in Subcooled Water (과냉각수조 내의 제트에 의한 용융우드메탈 미립화에 관한 실험적 연구)

  • Heo, Hyo;Jerng, Dong Wook;Bang, In Cheol
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.197-203
    • /
    • 2014
  • The liquid jet breakup has been studied in the areas such as aerosols, spray and combustion. The breakup depends on several physical parameters such as the jet velocity, the nozzle inner diameter, and the density ratio of the water to the jet. This paper deals with characteristics of the jet breakup according to the jet velocity and the nozzle diameter. In order to consider only hydrodynamic factors, all the experiments were conducted in non-boiling conditions. The jet behavior in the water pool was observed by high-speed camera and PIV technique. For the condition of the inner diameter of 6.95 mm and the jet velocity of 2.8 m/s, the debris size of 22 mm gave the largest mass fraction, 39%. For higher jet velocity of 3.1 m/s, the debris size of 14 mm gave the largest mass fraction, 36%. For the nozzle with inner diameter of 9.30 mm, the debris size distribution was different. For jet velocity of 2.8 m/s and 3.1 m/s, the debris size with the largest mass fraction was found to be 14 mm. It was identified that the debris size decreased as the diameter or the jet velocity increased.

Nonlinear analysis and design of concrete-filled dual steel tubular columns under axial loading

  • Wan, Cheng-Yong;Zha, Xiao-Xiong
    • Steel and Composite Structures
    • /
    • v.20 no.3
    • /
    • pp.571-597
    • /
    • 2016
  • A new unified design formula for calculating the composite compressive strength of the axially loaded circular concrete filled double steel tubular (CFDST) short and slender columns is presented in this paper. The formula is obtained from the analytic solution by using the limit equilibrium theory, the cylinder theory and the "Unified theory" under axial compression. Furthermore, the stability factor of CFDST slender columns is derived on the basis of the Perry-Robertson formula. This paper also reports the results of experiments and finite element analysis carried out on concrete filled double steel tubular columns, where the tested specimens include short and slender columns with different steel ratio and yield strength of inner tube; a new constitutive model for the concrete confined by both the outer and inner steel tube is proposed and incorporated in the finite element model developed. The comparisons among the finite element results, experimental results, and theoretical predictions show a good agreement in predicting the behavior and strength of the concrete filled steel tubular (CFST) columns with or without inner steel tubes. An important characteristic of the new formulas is that they provide a unified formulation for both the plain CFST and CFDST columns relating to the compressive strength or the stability bearing capacity and a set of design parameters.