• Title/Summary/Keyword: Inner Cell Mass

Search Result 129, Processing Time 0.024 seconds

The effect of the site of laser zona opening on the complete hatching of mouse blastocysts and their cell numbers

  • Sanmee, Usanee;Piromlertamorn, Waraporn;Vutyavanich, Teraporn
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.3
    • /
    • pp.152-156
    • /
    • 2016
  • Objective: We studied the effect of the site of laser zona opening on the complete hatching of mouse blastocysts and the cell numbers of the completely hatched blastocysts. Methods: Mouse blastocysts were randomly allocated to the inner cell mass (ICM) group (zona opening performed at the site of the ICM, n=125), the trophectoderm (TE) group (zona opening performed opposite to the ICM, n=125) and the control group (no zona opening, n=125). Results: The rate of complete hatching of the blastocysts was not significantly different in the ICM and the TE group (84.8% vs 80.8%, respectively; p=0.402), but was significantly lower in the control group (51.2%, p<0.001). The cell numbers in the completely hatched blastocysts were comparable in the control group, the ICM group, and the TE group ($69{\pm}19.3$, $74{\pm}15.7$, and $71{\pm}16.8$, respectively; p=0.680). Conclusion: These findings indicate that the site of laser zona opening did not influence the rate of complete hatching of mouse blastocysts or their cell numbers.

Embryonic Stem Cell and Nuclear Transfer

  • 임정묵
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.06a
    • /
    • pp.19-25
    • /
    • 2002
  • Researches on manipulation pluripotent stem cells derived from blastocysts or promordial germ cells (PGCs) have a great advantages for developing innovative technologies in various fields of life science including medicine, pharmaceutics, and biotechnology. Since the first isolation in the mouse embryos, stem cells or stem cell-like colonies have been continuously established in the mouse of different strains, cattle, pig, rabbit, and human. In the animal species, stem cell biology is important for developing transgenic technology including disease model animal and bioreactor production. ES cell can be isolated from the inner cell mass of blastocysts by either mechanical operation or immunosurgery. So, mass production of blastocyst is a prerequisite factor for successful undertaking ES cell manipulation. In the case of animal ES cell research, various protocol of gamete biotechnology can be applied for improving the efficiency of stem cell research. Somatic cell nuclear transfer technique can be applied to researches on animal ES cells, since it is powerful tool for producing clone embryos containing genes of interest. In this presentation, a brief review was made for explaining how somatic cell nuclear transfer technology could contribute to improving stem cell manipulation technology.

  • PDF

Mass Production of Pullulan with Optimized Concentrations of Carbon and Nitrogen Sources by Aureobasidium pullulans HP-2001 in a 100-L Bioreactor with the Inner Pressure

  • Seo, Hyung-Pil;Chung, Chung-Han;Kim, Sung-Koo;Richard A. Gross;David L. Kaplan;Lee, Jin-Woo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.2
    • /
    • pp.237-242
    • /
    • 2004
  • Cell growth and the production of pullulan by Aureobasidium pullulan HP-2001, the UV-induced mutant of A pullulans ATCC 42023, increased with increased concentration of glucose up to 15.0% (w/v). Maximal production of pullulan in the flask scale was 27.65 g/l, when concentrations of glucose and yeast extract were 15.0 and 0.25% (w/v), respectively. Maximal conversion rate of pullulan from glucose as the carbon source was 0.37, when those of glucose and yeast extract were 5.0 and 0.15% (w/v), respectively. On the basis of total amount of pullulan, the conversion rate of pullulan from glucose, and utilization rate of glucose to cell mass and pullulan by A. pullulans HP-2001, the optimal concentrations of glucose and yeast extract for the mass production of pullulan were determined to be 10.0 and 0.25% (w/v), respectively, at which concentrations the production of pullulan and its conversion rate were 27.14 g/l and 0.27, respectively. Maximal production of pullulan with optimized concentrations of carbon and nitrogen sources by A. pullulans HP-200l in a 7-1 bioreactor was 32.12 g/l for 72 h culture, and that in a 100-1 bioreactor with the inner pressure of $0.4 kgf/cm^2$ was 36.87 g/l. Increased inner pressure of a 100-1 bioreactor resulted in a higher concentration of dissolved oxygen in the medium, which might enhance the production of pullulan by A. pullulans HP-2001.

Effects of Various Addition and Exclusion Time of Glucose on Development of Mouse Two-Cell Embryos

  • Park S. B.;Park K S.;Lee T. H.;Chun S. S.;Kim K S.;Song H. B.
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.227-233
    • /
    • 2004
  • This study was conducted to investigate the effect of various addition and exclusion time of glucose (Control: no addition, A: 24~72 h, B: 24~48 h, C: 48~72 h, D: 0~72 h, E: 0~48 h, F: 0~24 h and 48~72 h, G: 0~24 h) on embryonic developmental capacity of 2-cell embryos in mice. Developed blastocysts were assessed for mean cell number by differential staining. The zona-intact blastocyst (ZiB) rates were higher (p<0.05) in group B than control. However, the zona-escape blastocyst (ZeB) rates were not significantly different in all groups. At 72 h, total blastocyst (ZiB + ZeB) formation rates were not significantly different in all groups. The mean cell number was not significantly different among all groups. The inner cell mass (ICM) cell number was higher (p<0.05) in group F than control, group A, B and G. The trophectoderm (TE) cell number was higher (p<0.05) in control than group A and D. The %ICM was higher (p<0.05) in group C, D and F than control. The ICM : TE ratio was not significantly different in all groups. Between control and glucose group, no significant difference was observed in the total blastocysts (ZiB + ZeB) formation rates. Also, no significant difference was observed in the mean cell number, ICM cell number and ICM : TE ratio. However the TE cell number was higher (p<0.05) in control than glucose group and %ICM was higher (p<0.05) in glucose group than control. In conclusion, glucose added in culture medium was not inhibitory on blastocyst formation but glucose added for 48 ~72 h in culture medium increases %ICM of blastocysts in mice.

Effects of laser-assisted hatching and exposure time to vitrification solution on mouse embryo development

  • Kim, Hye Jin;Park, Sung Baek;Yang, Jung Bo;Choi, Young Bae;Lee, Ki Hwan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.44 no.4
    • /
    • pp.193-200
    • /
    • 2017
  • Objective: This study was conducted to investigate the efficacy of laser-assisted hatching (LAH) and various vitrification times for embryonic development and blastocyst cell numbers. Methods: First, 2-cell and 8-cell embryos were collected by flushing out the oviducts. In the control groups, they were vitrified for 8 or 10 minutes without LAH. The LAH groups underwent quarter laser zona thinning-assisted hatching before vitrification (4, 6, and 8 minutes or 4, 7, and 10 minutes, respectively). After incubation, double-immunofluorescence staining was performed. Results: The hatched blastocyst rate 72 hours after the 2-cell embryos were thawed was significantly higher in the 2LAH-ES8 group (33.3%) than in the other groups (p< 0.05). In the control-8 group ($22.1{\pm}4.6$), the cell number of the inner cell mass was higher than in the LAH groups (p< 0.05). The number of trophectoderm cells was higher in the 2LAH-ES6 group ($92.8{\pm}8.9$) than in the others (p< 0.05). The hatched blastocyst rate 48 hours after the 8-cell embryos were thawed was higher in the 8LAH-ES4 group (45.5%) than in the other groups, but not significantly. The inner cell mass cell number was highest in the 8LAH-ES7 group ($19.5{\pm}5.1$, p< 0.05). The number of trophectoderm cells was higher in the 8LAH-ES10 group ($73.2{\pm}12.1$) than in the other groups, but without statistical significance. Conclusion: When LAH was performed, 2-cell embryos with large blastomeres had a lower hatched blastocyst rate when the exposure to vitrification solution was shorter. Conversely, 8-cell embryos with small blastomere had a higher hatched blastocyst rate when the exposure to vitrification solution was shorter.

Expression of Epidermal Growth Factor-Receptor (EGF-R) on the Inner Cell Mass (ICM) of Bovine IVM/IVF/IVC Blastocyst (체외생산된 소 배반포기배 ICM세포에서의 EGF-R 발현)

  • ;N.L. First
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.1
    • /
    • pp.39-46
    • /
    • 1997
  • 본 연구는 체외생산된 소 배반포기배의 inner cell mass (ICM) 세포에서 epidermal growth factor-receptor (EGF-R)의 발현 유무를 immunosurgery와 indirect immunofluorescence (간접 면역 형광방법)을 이용하여 조사하고자 실시하였다. 본 실험에 사용된 ICM 세포는 체외수정 후 7∼8일째에 회수된 소 배반포기배로부터 immunosurgery 방법을 실시하여 얻어졌으며, 회수된 ICM세포는 live/dead 염색방법을 통한 생사 유무와 EGF-R 발현 유무 조사에 공시되었다. 특히, 배반포기배에 대한 immunosurgery를 위해 trophectoderm 세포에 대한 rabbit anti-bovine trophectoderm cell antibody (RABTE)를 제조하여 사용하였다. 결과를 요약하면 다음과 같다. ICM세포의 회수율은 RABTE와 guinea pig serum (complement)에 각각 15∼30분과 15∼60분동안 처리했을 경우 16.7∼74.2%였으며, 또한 처리시간이 각각 30분과 30분일 때 가장 높은 회수율(74.2%)을 얻었다. Immunosurgery 후 얻어진 ICM세포의 생존 유무를 조사하기 위해 live/dead 염색 방법을 이용하였던바, ICM세포의 생존율은 complement가 60분 처리된 군(69.3%)을 제외한 모든 처리군에서 84.0∼91.6%의 높은 생존율을 나타냈다. 또한, 회수된 ICM세포에 대한 EGF-R의 존재를 확인하였다. 따라서, ICM세포에서의 EGF-R의 발현은 인위적으로 첨가된 EGF의 이용 가능성을 높임으로서 체외에서의 착상전 배 발달을 증진시킬 수 있을 것으로 사료된다.

  • PDF

Effects of the Morphology of Ovaries and Vessels for In Vitro Maturation on the Development and Cell Number of Korean Native Cow Embryos (난소의 형태와 배양 용기가 한우 체외수정란의 발달과 세포수에 미치는 영향)

  • Park Y. S.;Park H. D.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • The aim of this study was to improve efficiency and quality of the production of Korean Native Cow embryos. We examined effects of ovarian morphology and maturation vessel on the development and cell number of blastocysts. The development rates to the 2-cell embryos from oocytes collected from the ovaries of different morphological statues were similar ranging between 70.3 and 84.1%. The development rate to the 8 cell- and blastocyst-stage embryos was the highest in the group without both corpus luteum (CL) and follicle. The inner cell mass (ICM), trophectoderm (TE) and total cell number (TCN) were significantly higher in the groups of follicular cyst and regressive CL than other treatment groups, and the same pattern was observed in the ICM/TCN ratio. The development rate to the 2-cell stage was significantly higher in 0.5-㎖ straw group than 0.25-㎖ straw group. However, the development rates to the blastocyst stage were similar between the dish and the straw group. There were no differences in the number of ICM and TE cells, TCN and ICM/TCN ratio of blastocysts from oocytes matured in the different vessels.

Potential functional roles of follistatin on bovine somatic cell nuclear transfer embryos

  • Lee, Kyung-Bon;Woo, Jae-Seok;Lee, Bo-Myoung;Park, Kang-Sun;Han, Kil-Woo;Kim, Min Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.4
    • /
    • pp.353-358
    • /
    • 2013
  • To demonstrate that follistatin treatment enhances the efficiency of nuclear transfer (SCNT), cell allocation and preimplantational development were determined in bovine SCNT embryos in the present study. Treatment of activated SCNT embryos with 10 ng/ml follistatin significantly increased the proportion of blastocyst development compared to untreated SCNT embryos. In addition, an increase in trophectoderm (TE) cell numbers and relatively higher proportion of TE cells to total cells were observed, but the number of inner cell mass (ICM) cell and total cell numbers were not changed (P < 0.05). No significant effect of other doses of follistatin was observed for the above endpoints. However, treatment with 1 and 10 ng/ml follistatin reduced the proportion of nuclear transfer blastocysts with an ICM ratio of > 60% relative to untreated nuclear transfer blastocysts at Day 7. No significant effect of follistatin treatment on proportions of nuclear transfer blastocysts with ICM ratio of 20-40% or 40-60% was observed. Taken together, these results suggested that follistatin can be used to increase developmental competence of SCNT embryos in terms of cell allocation, particularly TE cells, during preimplantation stages, subsequently enhancing placentation and birth of live offspring.

The Effect of Cryopreservation on the Mouse Embryos at Various-pronuclear Stages

  • Park, M.C.;Kim, J.Y.;Kim, S.B.;Park, Y.S.;Park, H.D.;Lee, J.H.;Oh, D.S.;Kim, Jae-myeoung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.174-180
    • /
    • 2009
  • This study was carried out to establish an appropriate condition for the efficient cryopreservation of the mouse pronuclear embryo. In vitro cryopreservation of pronuclear embryos was carried out by slow freezing or vitrification methods and development rate of 2-cell, blastocyst and hatched blastocyst was measured as well as survival rate of the thawed pronuclear embryo. After slow freezing, vitrification and thawing of mouse pronuclear embryos, the survival rate and blastocyst development rate for the vitrification group was 97.3 and 53.4%, respectively, which was significantly higher as compared to the slow freezing group with 88.6 and 23.9%, respectively (p<0.05). Blastocyst developmental rate in each experimental group was significantly higher for 21 h in the post-hCG group at 40.5-57.0% than the 24 h post-hCG group at 40.5% (p<0.05). ICM (Inner cell mass) cell numbers of blastocyst-stage embryos during the different stages of mouse pronuclear embryos, slow freezing and vitrification period in the control and vitrification groups were 22.1${\pm}$2.7 and 17.0${\pm}$3.1-22.0${\pm}$3.2, respectively; hence, the slow freezing group (10.2${\pm}$2.0) had significantly higher cell numbers than those of the other two groups (p<0.05). Trophoblast (TE) cell number in the control group, 65.8${\pm}$12.6, was significantly higher than in the slow freezing group, 41.6${\pm}$11.1 (p<0.05). The total cell numbers in the control group and 21 h post hCG group were 87.9${\pm}$13.6 and 81.8${\pm}$14.1, respectively, and were significantly higher than for the slow freezing group (51.8${\pm}$12.6; p<0.05).

Effect of Various Supplements on Embryo Development and Quality of Bovine Embryos during In Vitro Maturation (한우 난포란의 체외성숙 시 여러 가지 첨가물이 배 발생과 품질에 미치는 영향)

  • Park Hum-Dae;Jang Mi-Jin;Park Yong-Soo
    • Reproductive and Developmental Biology
    • /
    • v.30 no.1
    • /
    • pp.21-26
    • /
    • 2006
  • This study was examined the effects of concentrations of polyvinylpyrrolidone(PVP) and supplementation of EGF, cysteine and PVP during in vitro maturation on the development of bovine embryos. In experiment 1, 0.1 to 3.0% PVP was supplemented to IVM medium before IVF. The development rates to the blastocyst stage was significantly higher in 0.5% PVP group than 3.0% PVP group (P<0.05). In experiment 2, EGF, rysteine and PVP were supplemented to IVM medium. The hight cleavage rate was obtained from cysteine group, but blastocyst formation rates did not differ among groups. The highest total cell number and inner cell mass (ICM) cell number were observed in cysteine group. In PVP group, ICM cell number was significantly low than those of cysteine and control groups (P<0.05). After embryo transfer, pregnancy rate was significantly low in PVP group compared to other groups (P<0.05). These results indicate that the supplementation of PVP in IVM medium support the embryo development, but has a deteriorate effect on the blastocyst quality.