• 제목/요약/키워드: Inlet Flow Angle

검색결과 267건 처리시간 0.024초

송출공의 회전이 송출계수와 압력계수에 미치는 영향 (The Effect of Rotation of Discharge Hole on the Discharge Coefficient and Pressure Coefficient)

  • 하경표;구남희;고상근
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.948-955
    • /
    • 2003
  • Pressure coefficient in rotating discharge hole was measured to gain insight into the influence of rotation to the discharge characteristics of rotating discharge hole. Pressure measurements were done by the telemetry system that had been developed by the authors. The telemetry system measures static pressure using piezoresistive pressure sensors. Pressure coefficients in rotating discharge hole were measured in longitudinal direction and circumferential direction with various rotating speed and 3 pressure ratios. From the results, the pressure coefficient, and therefore the discharge coefficient, is known to decrease with the increase of Ro number owing to the increase of flow approaching angle to the discharge hole inlet. However, there exists critical Ro number where the decrease rate of discharge coefficient with the increase of Ro number changes abruptly; flow separation occurs from the discharge hole exit at this critical Ro number. Critical Ro number increases with the increase of length-to-diameter ratio, but the increase is small where the length-to-diameter ratio is higher than 3. The decrease rate of discharge coefficient with the increase of Ro number depends on the pressure recovery at the discharge hole, and the rate is different from each length-to-diameter ratio; it has tendency that the short discharge hole shows higher decrease rate of discharge coefficient.

고체 입자가 부상된 충돌제트에서의 입자 거동에 관한 수치해석적 연구 (Numerical Study on the Particle Movement of a Particle-Laden Impinging Jet)

  • 이재범;서영섭;이정희;최영기
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1802-1812
    • /
    • 2001
  • The purpose of this study is to analyze numerically the movement of particles included in turbulent fluid flow characteristics of metallic surfaces. To describe fluid flew, the incompressible Navier-Stokes equation discretized by the finite volume method were solved on the non-orthogonal coordinates with non-staggered variable arrangement, and the k-$\xi$ turbulence model was adapted. After fluid flow was calculated, particle movement was predicted from the Lagrangian approaches. Non-essential complexities were avoided by assuming that the particles had spherical shapes and the Stoke's drag formula only consisted of external farces acting upon them. In order to validate the numerical calculations, the results were compared with the experimental data reported in literature and agreed well with them. The drag force coefficient equation showed better agreement with the experimental data in the prediction of particle movement than the correction factor equation. Impact velocity and impact angle increased as inlet turbulence intensity decreased, relative jet height was lower. or the Reynolds number was larger.

증기 이젝터의 자동설계를 위한 전산프로그램의 개발 (A study on the Computer-Aided Design of steam ejector)

  • 김경근;김용모;강신돌
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.53-60
    • /
    • 1987
  • Steam ejector is a equipment which compresses the gases to desired discharge pressure. It is widely used for the evacuation systems because of its high working confidence. And recently it is used as the thermo-compressors in the various energy saving systems. Steam ejector is constructed of three basic parts; a suction chamber, a motive nozzle and a diffuser. The high velocity stream jet of steam emitted by the motive nozzle creats suction chamber, which draws the low pressure gases. The diffuser converts the kinetic energy of high velocity flow to pressure energy. It is not easy to determine the dimensions of a steam ejector met to the desired design condition, because that the expected suction rates must be obtained by reapeating the complicate calculation. And also such a calculation is concomitant with geometrical analysis for suction part and diffuser based on the stability of steam flow. Therefore, it is considered that the Computer-Aided Design (CAD) of steam ejector is a powerful design method. In this paper, computer program for steam ejector design is developed based on the theoretical research and the previous experimental results. And the determinating method of diffuser inlet angle and the velocity development profile of suction gas along to the diffuser are suggested. The validity of the development profile of suction gas along to the diffuser are suggested. The validity of the developed computer results with other's for the practical design calculation of a manufactured steam ejector.

  • PDF

판각형 열교환기 성능해석에 관한 연구 (A Study on the Performance Analysis in the Plate and Shell Heat Exchanger)

  • 서무교;박재홍;김영수
    • 동력기계공학회지
    • /
    • 제5권1호
    • /
    • pp.35-43
    • /
    • 2001
  • Heat exchangers are called with important devices which have been widely used in industrial fields. Therefore, the design method for a heat exchanger is an important study in the aspect of energy saving. In this study, performance analyses for two types of plate and shell heat exchangers having a corrugated trapezoid shape of a chevron angle with $45^{\circ}$, were executed and compared with experiments. For this study, the operation liquids were adopted with non-phase changing water. In the analysis, ${\epsilon}-NTU$ method was used for a plate and shell heat exchanger and a program was constructed. Independent variables for a plate and shell heat exchanger are flow rate and inlet temperature. Compared with experimental data, the accuracy of the developed are ${\pm}2.5%\;and\;{\pm}5%$ at the type A and type B in the heat transfer rate, respectively. In the pressure drop, the accuracy of the proposed program for a plate and shell heat exchanger is within ${\pm}3%$ and 5% error bounds for the type A and type B, respectively.

  • PDF

Efficiency Index Diagram for Wake Region Evaluation of Artificial Reefs Facilitated for Marine Forest Creation

  • Kim, Dongha;Jung, Somi;Na, Won-Bae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제2권4호
    • /
    • pp.169-178
    • /
    • 2016
  • Recently, artificial reefs (ARs) have been frequently used primarily owing to the development in AR materials and projects for relatively complicated, large ARs. Among several engineering issues of ARs, wake region of an AR has been characterized because these regions have a high probability of recruiting seaweed spores, providing an energy saving zone, and facilitating deposition of sediments, nutrients, and bio-deposits. To characterize an efficiency index of an AR wake region and its dependency on the prevailing water flow directions, this study proposes a so-called efficiency index diagram. This characterization is done by normalizing the wake volumes with respect to the real AR volume and illustrating how efficiency indices vary with respect to the inlet flow directions. As a result, according to the diagram characteristics such as an averaged efficiency index, fundamental symmetric angle, secure angles, and principal directions, we can easily figure out how a target AR should be aligned along the main water flows to maximize the wake region around the AR. In addition, six ARs are considered and their efficiency index diagrams are illustrated to pinpoint the physical characteristics.

Influence of Guide Vane Setting in Pump Mode on Performance Characteristics of a Pump-Turbine

  • Li, Deyou;Wang, Hongjie;Nielsen, Torbjorn K.;Gong, Ruzhi;Wei, Xianzhu;Qin, Daqing
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권2호
    • /
    • pp.154-163
    • /
    • 2017
  • Performance characteristics in pump mode of pump-turbines are vital for the safe and effective operation of pumped storage power plants. However, the head characteristics are different under different guide vane openings. In this paper, 3-D steady simulations were performed under 13mm, 19mm and 25mm guide vane openings. Three groups of operating points under the three GVOs were chosen based on experimental validation to investigate the influence of guide vane setting on flow patterns upstream and downstream. The results reveal that, the guide vane setting will obviously change the flow pattern downstream, which in turn influences the flow upstream. It shows a strong effect on hydraulic loss (power dissipation) in the guide and stay vanes. It is also found that the hydraulic loss mainly comes from the flow separation and vortices. In addition, in some operating conditions, the change of guide vane opening will change the flow angle at the runner inlet and outlet, which will change the Euler momentum (power input). The joint action of Euler momentum and hydraulic loss results in the change of the head characteristics.

자동차용 터보차저의 오버헝 압축기 볼류트의 두 형태에 대한 유동장 특성 (Flow Characteristics of Two Types of Overhung Compressor Volute for Automobile Turbocharger)

  • ;이근식
    • 대한기계학회논문집B
    • /
    • 제38권1호
    • /
    • pp.25-30
    • /
    • 2014
  • 자동차용 터보차저 원심압축기의 오버헝 볼류트의 두 가지 타입에 대한 유동장 특성이 수치적으로 연구되었다. 볼류트의 성능을 높이기 위해서는 높은 압력회복계수와 낮은 손실계수를 갖도록 함이 필요하다. 본 연구에서는 디퓨저 입구각을 $24^{\circ}$, 질량유량을 0.055 kg/s 로 유지하고 두 가지 타입의 오버헝 볼류트에 대한 유동장 특성을 조사하였다. 하나는 1 개의 원호로 이루어진 볼류트 단면(타입 1)이며, 다른 하나는 3 개의 원호로 이루어진 볼류트 단면(타입 2)이다. 타입 2 볼류트가 타입 1 볼류트 보다 원주방향 전체를 통틀어 높은 압력회복계수와 낮은 손실계수를 보여주었다.

수동형 감요수조의 하부덕트 유동에 관한 기초연구 (A Fundamental Study on Lower Duct Flow of passive anti-rolling tanks System)

  • 이철재;임정선;정한식;정효민
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2006년도 추계학술발표회
    • /
    • pp.265-269
    • /
    • 2006
  • 파랑에 의한 선박의 횡동요를 방지하는 감요장치는 크게 수동식과 능동식 으로 분류할 수 있으며 수동형 감요수조는 선박에서 가장 널리 사용되고 있다. 이 연구에서는 감요장치의 하부덕트유동에 관한 기초연구로서 덕트의 제어 댐퍼와 유입부의 유통에 대해 입자영상 유속측정장치를 이용하여 속도벡터분포에 관한 정량적인 데이터를 확보하였다. 그 결과 실험관 벽면에서 측정 된 압력의 분포는 디스크가 전개 상태인 0 도에서 45도까지는 입구 압력은 일정한 상태로 거의 변화하지 않았으나 약 60도 이상에서부터 압력 상승과 점차 급격한 변동현상이 나타났다.

  • PDF

수직형 소형풍력터빈의 비정상 익력 평가 (Analysis of Unsteady Blade Forces in a Vertical-axis Small Wind Turbine)

  • 이상문;김철규;전석윤;알사지드;장춘만
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.197-204
    • /
    • 2018
  • In the present study, unsteady flow analysis has been conducted to investigate the blade forces and wake flow around a hybrid street-lamp having a vertical-axis small wind turbine and a photovoltaic panel. Uniform velocities of 3, 5 and 7 m/s are applied as inlet boundary condition. Relatively large vortex shedding is formed at the wake region of the photovoltaic panel, which affects the increase of blade torque and wake flow downstream of the wind turbine. It is found that blade force has a good relation to the variation of the angle of attack with the rotation of turbine blades. Variations in the torque on the turbine blade over time create a cyclic fluctuation, which can be a source of turbine vibration and noise. Unsteady fluctuation of blade forces is also analyzed to understand the nature of the vibration of a small wind turbine over time. The detailed flow field inside the turbine blades is analyzed and discussed.

Kane 다물체 동력학을 이용한 공기흡입식 추진기관 부스터 분리에 관한 연구 (Analysis of Rocket Booster Separation from Air-Breathing Engine with Kane's Method)

  • 최종호;임진식
    • 한국추진공학회지
    • /
    • 제13권3호
    • /
    • pp.41-49
    • /
    • 2009
  • 본 논문은 공기흡입식 추진기관의 고체 로켓 부스터 분리에 관한 수학적 모델링과 시뮬레이션 기법을 기술하였다. 비행체 및 부스터는 하나의 다물체(multi-body)로 고려하였고 부스터는 단지 비행체의 축 방향으로 움직이는 것으로 가정하였다. 비행체 및 부스터의 동적 운동은 Kane 방법에 의해 모델링 되었다. 다양한 부스터 위치에 따라 전체 시스템에 작용하는 공력은 DATCOM 소프트웨어를 사용하여 산출되었으며 부스터 분리 유효 작용면에 작용하는 내부 분리 압력은 일반적인 기체역학 및 Taylor-MacColl 관계식에 의해 산출되었다. 수치적 해석은 Mathworks사의 Matlab이 사용되었다. 해석 결과에 의하면 부스터 분리 동안 마하수 및 받음각 변화 등은 크지 않는 것으로 나타났으며, 실제 시험 장치를 이용한 부스터 분리 시험이 진행될 경우 자세 각 변화, 흡입 유동 특성 등은 무시할 만한 수치임을 확인할 수 있었다.