• Title/Summary/Keyword: Inlet/Outlet Location

Search Result 55, Processing Time 0.023 seconds

Optimum Design for Inlet and Outlet Locations of Rectangular Expansion Chamber for Improving Acoustic Performance (사각형 단순 확장소음기의 성능향상을 위한 입$\cdot$출구 위치의 최적설계)

  • 김봉준;정의봉;황상문
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.738-746
    • /
    • 1999
  • The performance of muffler can be improved for a frequency range of interest by moving inlet and outlet locations. And optimal location of inlet and outlet can be determined to improve the acoustic performance. The optimum design using FEM, however, may take a very long time and be very hard to take inlet and outlet locations as design variables. In this paper, the acoustic performance of reactive type single expansion chamber muffler is predicted using higher order mode theory. The sensitivity analysis of transmission loss with respect to the location of inlet and outlet is suggested. And the acoustic power transmission coefficient for a frequency of interest is used as cost function. Optimum location of inlet and outlet is determined to minimize cost function by using SUMT algorithm.

  • PDF

Optimum Design for Inlet and Outlet Locations of Circular Expansion Chamber for Improving Acoustic Performance (원형 단순 확장소음기의 성능향상을 위한 입.출구 위치의 최적설계)

  • An, Se-Jin;Kim, Bong-Jun;Jeong, Ui-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2487-2495
    • /
    • 2000
  • The acoustic characteristics of expansion chamber will be changed with the variation of inlet/outlet location due to the higher order acoustic mode in a high frequency in which the plane wave theory is not available. In this paper, the acoustic performance of reactive type expansion chamber with circular cross-section is analyzed by using the modified mode matching theory. The sensitivity analysis of four-pole parameters with respect to the location of inlet and outlet is also suggested to increase the acoustic performance. The acoustic power transmission coefficient is used as cost function, and the location of inlet and outlet is used as design variables. The steepest descent method and SUMT algorithm are used for optimization technique. Several results showed that the expansion chamber with optimally located inlet/outlet had better acoustic performance than concentric expansion chamber.

Modified Mode Matching Technique for Analyzing Simple Expansion Chamber with Arbitrary Inlet/Outlet Location (임의의 입ㆍ출구 위치를 가지는 소음기 해석을 위한 개선된 모드일치법)

  • Kim, Bong-Jun;Jeong, Ui-Bong;Lee, Jeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1314-1322
    • /
    • 2000
  • The acoustic property of reactive type single expansion chamber can be analyzed by traditional plane wave theory. This theory can be applied in low frequency range and has good performance. But this theory can't include higher order modes, therefore another method is essential to analyze acoustic filter in high frequency range. Many researcher suggested the method that can concern higher order modes, and their methods are using mode matching technique. But there is no method that can be applied to the analysis of single expansion chamber with arbitrary inlet/outlet duct position and numbers of higher order modes of inlet/outlet duct and middle chamber. In this paper, the method which can analyze single expansion chamber with arbitrary inlet/outlet duct position and numbers of higher order modes of inlet/outlet duct and middle chamber using fundamental mode matching technique, was suggested and the predictions by this method was compared with those by the finite element method, and the influence of inlet/outlet location to acoustic performance of single expansion chamber is investigated and explained by higher order mode effects.

Acoustic Analysis of Circular Simple Expansion Chamber with Arbitrary Location and Cross-Section Area of Inlet/Outlet (원형단순확장관의 입$\cdot$출구 위치와 단면 크기를 고려한 음향해석법)

  • 김봉준;정의봉;황상문
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.914-921
    • /
    • 1999
  • There are many theoretical investigations to analyze higher order mode of reactive type single expansion chambers with offset inlet/outlet locations. But the conventional method has the restriction that the ratio between the area of inlet(or outlet) pipe and that of chamber must be natural number. In the paper, a new method was suggested to apply the Kim's method to silencer with circular cross-section. Not only the offset location but also the magnitude of cross-section area of inlet/outlet pipe can be considered by the suggested method. The predictions by this new method also compared with those by the finite element method and Munjal's method in order to verify the accuracy of the suggested method presented here.

  • PDF

Numerical Analysis of Flow Phenomena in Cylindrical Shell with Baffle according to the Position of Inlet and Outlet (출.입구 위치에 따른 배플을 갖는 원통내 유동특성에 대한 수치해석)

  • Shin, Y.H.;Sayeed, S.M.;Jean, Y.C.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.15 no.6
    • /
    • pp.22-26
    • /
    • 2011
  • A numerical simulation on the flow field was carried out on the cylindrical shell with baffles. The steady incompressible 3-D Navier-Stokes solution is obtained with the actual operational condition and geometry of the heat exchanger. The effect of the location of inlet and outlet on the cylindrical shell with baffle is investigated by varying flow rate. The angle between the location of In/Outlet and baffle cutting part is $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$, $150^{\circ}$ and $180^{\circ}$. The present results show that the pressure drop is dependent on Reynolds number in the inlet area and position of inlet and outlet; i.e., the pressure drop increases with increasing Reynolds number and the pressure drop decreases with increasing angle between baffle cutting part and position of inlet and outlet.

Heat and Flow Analysis Inside a Parallel-Flow Heat Exchanger (평행류 열교환기 내부의 열유동 해석)

  • Oh, Seok-Jin;Chung, Kil-Yoan;Lee, Kwan-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.781-788
    • /
    • 2003
  • In the present study, the heat and flow characteristics of a parallel-flow heat exchanger are numerically analyzed by using three-dimensional turbulent modeling. Heat transfer rate and pressure drop are evaluated using the concept of the efficiency index by varying the locations, the shapes and angles of inlet/outlet, and the protrusion height of flat tube. It is found that negative angle of the inlet improves the heat transfer rate and pressure drop. Results show that the locations of the inlet and outlet should be toward the right side and the left side to the reference model, respectively, in order to enhance the heat transfer rate and pressure drop. Increasing the height of the lower header causes pressure drop to decrease and yields the good flow characteristics. The lower protrusion height of flat tube shows the improvement of the heat transfer rate and pressure drop. The heat transfer rate is greatly affected by the parameters of outlet side such as the location and angle of the outlet. However, the pressure drop is influenced by the parameters of inlet side such as the location and angle of inlet and the height of the header.

Ventilation Hole Optimum Design of Smart Unit Load Container for Storage and Distribution Agricultural Products by Theoretical Heat Flow Analysis (이론적 열유동 해석을 이용한 농산물 저장 및 유통 스마트 유닛로드 컨테이너의 통기공 최적화 설계)

  • Dong-Soo, Choi;Yong-Hoon, Kim;Jin-SE, Kim;Chun-Wan, Park;Hyun-Mo, Jung;Ghi-Seok, Kim;Jong-Min, Park
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.3
    • /
    • pp.211-215
    • /
    • 2022
  • Air distribution occupies an important position in the smart unit load container design process for agricultural products. Inner air may be uncomfortable because of its temperature, speed, direction, and volume flow rate. It doesn't matter how efficient the ventilation equipment is if the air is not distributed well. The main aim of this study was to design the inlet and outlet fan locations of smart unit load container for agricultural products. A numerical study was performed on the effects of the location of inlet air and outlet air in relation to the container cooling sources on air distribution and thermal comfort. A concept of combining inner container cooling sources with the exhaust outlet was employed in this investigation. Also, in this research, the developed CFD (Computational Fluid Dynamics) models were thoroughly validated. This system was adopted for use in container spaces, where the exhaust outlet was located. In this study, the location of the inlet was derived through CFD for a container with a size of 1,100×1,100×1,700 mm, and it was derived that the inlet was located at the center of the lower part of the container for efficient air flow. It was efficient to position the outlet through the air inlet in the center of the lower part of the container at the top of the same side.

A Study on the Smoke Movement by the Opening and Heat Generator Position (개구부와 열원의 위치에 따른 연기이동에 관한 연구)

  • 조성우;이재윤
    • Fire Science and Engineering
    • /
    • v.16 no.4
    • /
    • pp.7-14
    • /
    • 2002
  • The diffusion characteristics of the smoke by effect of an ascending air movement in a local part of the room where heat generated was studied. How the smoke move in the limited parts of the room at which heat generated was studied through 3 cases altering locations of inlet and outlet of ventilated air and heat generated by CFD(Computational Fluids Dynamics) method. It was found that 1. Similar distribution of air velocity, air temperature and smoke concentration appeared in the case of upper left inlet and lower right outlet and the case of lower inlet and upper right outlet. 2. Distribution of temperature and smoke concentration was 0∼0.3, 0.06∼0.14 in the case of lower left inlet and upper right outlet. 3. the location of heat generation did not influence on the temperature distribution, but influence on the distribution of smoke concentration.

Performance Analysis of Summertime Heat Transfer Characteristics of the Double Skin Window for Plant Factory (식물공장 이중창호의 하절기 열전달 성능 분석)

  • So, Jae-Hyun;Kim, Woo-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.351-357
    • /
    • 2012
  • To reduce the summertime cooling load of a plant factory, a concept design was performed for the double skin window which utilizes the low temperature air from a ground coupled heat exchanger. The design parameters were selected as the number of cavity air inlet, the cavity thickness, the location of cavity air inlet, and the configuration of cavity air outlet. A parametric study was conducted in a systematic way to evaluate the heat transfer characteristics of the double skin window. As the number of cavity air inlet and the cavity thickness increase, the heat flux from outside air to indoor air was decreased. The effect of the location of cavity air inlet was not significant and the larger cavity air outlet area gave us relatively better heat blocking performance from outside hot air. This study demonstrated that it is possible to develop an improved double skin window by utilizing a ground coupled heat exchanger.

Evaluation of the location of the Outlets according to the Analysis of Ventilation conditions (환기상태 분석에 따른 급 배기구 위치 평가)

  • Moon, Yong-Jun;Kim, Hyouk-Soon;Kwak, Myong-Keun;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1207-1212
    • /
    • 2008
  • The purpose of this study is to evaluate the location of the outlets in the mechanical ventilation system installed in apartment. We performed the numerical analysis to estimate the ventilation effectiveness and the indoor $CO_2$ concentration considering the occupants and the condition with inlet and outlet in each room. From the numerical results, modified location of the outlets is about 10% high than designed one with respect to the ventilation effectiveness when the occupants are not considered. But designed location of inlet and outlet in living room and kitchen is better than modified one with respect to the reduction of $CO_2$ concentration in the living room and kitchen with occupants. In case of our model, Air change per hour (0.7) is not enough to sustain the acceptable criteria of $CO_2$ concentration (1000ppm) in the room with the occupants

  • PDF