• Title/Summary/Keyword: Inkjet Printing Method

Search Result 76, Processing Time 0.032 seconds

Patterning of Single-wall Carbon Nanotube using Ink-jet Printing (잉크젯 프린팅에 의한 단일벽 탄소나노튜브의 패터닝)

  • Song, Jin-Won;Yoon, Yeo-Hwan;Han, Chang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.236-237
    • /
    • 2007
  • A single-wall carbon nanotube (SWNT) transparent conductive film (TCF) was fabricated using a simple inkjet printing method. The TCF could be selectively patterned by controlling the dot size to diameters as small as 34${\mu}m$. In thisrepeatable and scalable process, we achieved 71% film transmittance and a resistance of 900 ohm/sq sheet with an excellent uniformity, about $\pm$5% deviation overall. Inkjet printing of SWNT is substrate friendly and the TCF is printed on a flexible substrate. This method of fabrication using direct printing permits mass production of TCF in a large area process, reducing processing steps and yielding low-cost TCF fabrications on a designated area using simple printing.

  • PDF

Micro Pattern Control of Metal Printing by Piezoelectric Print-head (압전 프린트 헤드에 의한 금속프린팅의 미세패턴제어)

  • Yoon, Shin-Yong;Choi, Geun-Soo;Baek, Soo-Hyun;Chang, Hong-Soon;Seo, Sang-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.147-151
    • /
    • 2011
  • We were analyzed the piezoelectric characteristic for electronics printing to inkjet printing system. These applications were possible use to Actuator, MEMS, FPCB, RFID, Solar cell and LCD color filter etc. Piezoelectric print head is firing from ink droplet control consideration ink viscosity properties. At this time, micro pattern for PCB metal printing was possible by droplet control of piezoelectric driving. These driving characteristics are variable voltage pulse waveform. We are used the piezoelectric analysis software of Finite Element Method (FEM), Piezoelectric design parameters are acquired from piezoelectric analysis, and measurement of piezoelectric. It designed for piezoelectric head to possible electric print pattern of inkjet printing system. For this validity we were established through in comparison with simulation and measurement. Designed piezoelectric specification obtained voltage 98V, firing frequency 10 kHz, resolution 360dpi, drop volume 20pl, nozzle number 256, and nozzle pitch 0.33 mm.

Field emission characteristics of CNT-FED using ink-jet printing (잉크젯 프린팅을 이용한 CNT-FED의 전계 방출 특성)

  • Song, Jin-Won;Yoon, Yeo-Hwan;Han, Chang-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.426-426
    • /
    • 2007
  • We report the field emission characteristics of transparent single-walled carbon nanotube (SWNT) film printed using an inkjet. Pure SWNTs dispersed in dimethylformamide were printed in a transparent layer on indium-tin oxide-coated glass and annealed at $350^{\circ}C$. After taping treatment, SWNTs were oriented vertically on the substrate. The front and the back of the fabricated device produced simultaneous emissions of identical quality. In addition, inkjet printing directly achieved a patterned emission, without a secondary pattern process. This method allows simple fabrication using only SWNTs, without the use of other additives.

  • PDF

Cu Line Fabricated with Inkjet Printing Technology for Printed Circuit Board (잉크젯 인쇄 기술을 이용한 인쇄회로기판용 나노구리배선 개발)

  • Seo, Shang-Hoon;Lee, Ro-Woon;Yun, Kwan-Soo;Joung, Jae-Woo;Lee, Hee-Jo;Yook, Jong-Gwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1806-1809
    • /
    • 2008
  • Study that form micro pattern by direct ink jet printing method is getting attention recently. Direct ink jet printing spout fine droplet including nano metal particle by force or air pressure. There is reason which ink jet printing method is profitable especially in a various micro-patterning technology. It can embody patterns directly without complex process such as mask manufacture or screen-printing for existent lithography. In this study, research of a technology that ejects fine droplet form of Pico liter and forms metal micro pattern was carried with inkjet head of piezoelectricity drive system. Droplet established pattern while ejecting consecutively and move on the surface at the fixed speed. Patterns formed in ink are mixed with organic solvent and polymer that act as binder. So added thermal hardening process after evaporate organic solvent at isothermal after printing. I executed high frequency special quality estimation of CPW transmission line to confirm electrical property of manufactured circuit board. We tried a large area printing to confirm application possibility of an ink jet technology.

  • PDF

Sol-gel Derived Nano-glass for Silicon Solar Cell Metallization (솔-젤법에 의해 제조된 실리콘 태양전지 전극형성용 나노 글래스)

  • Kang, Seong Gu;Lee, Chang Wan;Chung, Yoon Jang;Kim, Chang-Gyoun;Kim, Seongtak;Kim, Donghwan;Lee, Young Kuk
    • Current Photovoltaic Research
    • /
    • v.2 no.4
    • /
    • pp.173-176
    • /
    • 2014
  • We have investigated the seed layer formation of front side contact using the inkjet printing process. Conductive silver ink was printed on textured Si wafers with 80 nm thick $SiN_x$ anti reflection coating (ARC) layers and thickened by light induced plating (LIP). The inkjet printable sliver inks were specifically formulated for inkjet printing on these substrates. Also, a novel method to prepare nano-sized glass frits by the sol-gel process with particle sizes around 5 nm is presented. Furthermore, dispersion stability of the formulated ink was measured using a Turbiscan. By implementing these glass frits, it was found that a continuous and uniform seed layer with a line width of $40{\mu}m$ could be formed by a inkjet printing process. We also investigated the contact resistance between the front contact and emitter using the transfer length model (TLM). On an emitter with the sheet resistance of $60{\Omega}/sq$, a specific contact resistance (${\rho}_c$) below $10m{\Omega}{\cdot}cm^2$ could be achieved at a peak firing temperature around $700^{\circ}C$. In addition, the correlation between the contact resistance and interface microstructures were studied using scanning electron microscopy (SEM). We found that the added glass particles act as a very effective fire through agent, and Ag crystallites are formed along the interface glass layer.

Development of Uniform Ag Electrode and Heating Sensors Using Inkjet Printing Technology (잉크젯 프린팅 기술을 이용한 Ag 전극 균일성 및 발열 센서 연구)

  • Gun Woong Kim;Jaebum Jeong;Jin Ho Park;Woo Jin Jeong;Jun Young Kim
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.1
    • /
    • pp.24-29
    • /
    • 2024
  • Inkjet printing technology is used to mass-produce displays and electrochemical sensors by dropping tens of pico-liters or less of specific-purpose ink through nozzles, just as ink is sprayed and printed on paper. Unlike the deposition method for vaporizing material in a vacuum, inkjet printing technology can be used for processing even under general atmospheric pressure and has a cost advantage because the material is dissolved in a solvent and used in the form of ink. In addition, because it can only be printed on the desired part, masks are not required. However, a technical shortcoming is the difficulty for commercialization, such as uniformity for forming the thickness and coffee ring effect. As sizes of devices decrease, the need to print electrodes with precision, thinness, and uniformity increases. In this study, we improved the printing and processing conditions to form a homogeneous electrode using Ag ink (DGP-45LT-15C) and applied this for patterning to fabricate a heat sensor. Upon the application of voltage to the heat sensor, the model with an extended width exhibited superior heat performance. However, in terms of sheet resistance, the model yielded an equivalent value of 21.6 Ω/□ compared to the ITO.

Development of Methods for Detecting Inkjet Malfunction (잉크젯 헤드의 오작동 검출 방법 개발)

  • Kwon, Kye-Si;Go, Jung-Kook;Kim, Jin-Won;Kim, Dong-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1529-1535
    • /
    • 2010
  • For the reliable use of inkjet technology as patterning tools, the jetting of the inkjet dispenser needs to be monitored for real-time detection of any malfunction. We present a self-sensing circuit that can be used to detect jetting failure by measuring electrical signals only. In addition, practical problems involved in the monitoring of inkjets in multinozzle printheads are discussed. In the study, software was developed and presented to demonstrate the feasibility of the proposed method for detecting inkjet jetting failure in a printing system.

High performance inkjet printed polymer CMOS integrated circuits

  • Baeg, Kang-Jun;Kim, Dong-Yu;Koo, Jae-Bon;Jung, Soon-Won;You, In-Kyu;Noh, Yong-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.67-70
    • /
    • 2009
  • Printed electronics are emerging technology to realize various microelectronic devices via a cost-effective method. Here we introduce high performance inkjet printed polymer field-effect transistors and application to complementary integrated circuits with p-type and n-type conjugated polymers. The performance of devices highly depends on the selection of dielectrics, printing condition and device architecture. The device optimization and performances of various integrated circuits, e.g., complementary inverters and ring oscillators will be mainly discussed in this talk.

  • PDF

High Concentrated Silver Nano Ink Formulation for the Inkjet Applications (잉크젯 응용기술을 위한 고농도 은 나노 잉크 배합)

  • Kim, Tae-Hoon;Cho, Hye-Jin;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.559-560
    • /
    • 2006
  • Inkjet Printing is very attractive method for direct patterns with no masks, In order to Achieve direct printing with nano metal, It is often necessary to print them with highly concentrated Ink We research the High Concentrated silver nano ink. Formulation which has a good thermal stability and storage stability and jet stability using a ethylene glycol ether. Normally Alcohol-based inks can be sensitive But High boiling point ethylene glycol ether base Ink is creating a stable meniscus and minimum maintenance issues. We are reaching a 50~60wt% high Silver Ink using a Hydrophilic Ag Nano powder. (30~50nm)

  • PDF

Waveform Design for Piezo Inkjet via Self- sensing Measurement (셀프 센싱을 이용한 피에조 잉크젯의 파형 설계)

  • Kim, Woo-Sik;Kwon, Kye-Si
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.4 s.121
    • /
    • pp.333-341
    • /
    • 2007
  • Waveform design method for inkjet printing has been proposed tv pressure wave measurement. The pressure wane inside the inkjet dispenser can be effectively measured by current measurement due to self-sensing capability of PZT. The pressure wave measured from current was verified by commercially availablelaser vibrometer. In order to obtain high speed inkjet droplets, two pulse waveform was designed such that the pressure wane after droplet formation can be minimized.