• Title/Summary/Keyword: Inkjet Print

Search Result 47, Processing Time 0.025 seconds

Design of array typed inkjet head for line-printing (라인 프린팅을 위한 어레이 방식 잉크젯 헤드 설계)

  • Sang-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.529-534
    • /
    • 2023
  • Although line printing technology is capable of high-speed and large area printing, residual stresses generated during the manufacturing process can deform the feedhole, causing nozzle plate crack or ink leaks. Therefore, in this paper, we propose a new thermal inkjet print head that is robust, reliable and more suitable for line-printing. The amount of deformation of the conventional line printing head measured through the experiment was converted into an equivalent load, and the validity of the load estimation method was verified through FEA analysis. In addition, in order to minimize deformation without increasing the head size, the head structure was designed to increase internal rigidity by reinforcing the unit nozzle with a pillar or support wall or by adding a support beam or dry/wet etched bridge. The FEA analysis results show that the feedhole deformation was reduced by up to 90%, and it is confirmed that the suggested print head with dry etched feedhole bridge operates normally without nozzle plate cracks and ink leakage through fabrication.

Development of an Electrostatic Drop-On-Demand inkjet Device for Display Fabrication Process

  • Son, Sang-Uk;Choi, Jae-Yong;Lee, Suk-Han;Kim, Yong-Jae;Ko, Han-Seo;Kim, Hyun-Cheol;Byun, Do-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.655-659
    • /
    • 2006
  • This paper presents a novel electrostatic drop-on-demand inkjet device featured by a MEMS fabricated pole-type and hole-type nozzle with tube shaped orifice and investigates the feasibility of applying the inkjet device to display fabrication process. The electric voltage signal applied to the ring shaped upper electrode plate, against the hole-shaped ground or pole-shaped ground, referred here pole-type and hole-type nozzle respectively, allows ejection of small droplet to take place: That is, a tiny droplet is taken away from the peak of the mountain shaped liquid meniscus formed at the nozzle orifice. It is verified experimentally that the use of the pole type nozzle allows a stable and sustainable micro-dripping mode of droplet ejection for a wider range of applied voltages and of liquid viscosities. This demonstrates a feasibility of electrostatic drop-on-demand inkjet device as a disruptive alternative to conventional print heads such as thermal bubble or piezoelectric inkjet heads.

  • PDF

Multi-head Inkjet Patterning System for Manufacturing a Full Color Polymer Light Emitting Device (pLED) (고분자 유기 EL 제조를 위한 멀티헤드형 잉크젯 패터닝 시스템)

  • Oh, Je-Hoon;Kim, Si-Kyoung;Yoon, Hee-Youl;Oh, Se-Il;Kang, Yoo-Myung;Kim, Kwang-Il
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1219-1225
    • /
    • 2003
  • According to the increase of lifetime and efficiency, the interest in the pLED has dramatically increased recently because pLED can be applied to large-size and flexible displays. The core process in the manufacture of pLED is the printing process of red, green and blue light emitting polymers (LEP), and inkjet printing method is one of the promising technology to print red, green and blue LEP on glass substrates. In this work, we developed a multi-head inkjet patterning system with 3 heads for each color. The developed inkjet patterning system is composed of the precise positioning system, head controller circuit, real-time ink drop evaluation system, maintenance system, and stable ink supply system. Finally, we investigated the stability and reliability of the system by printing red, green and blue LEP on the dummy substrate.

  • PDF

Inkjet Printing on the Grain Leather: Evaluation of Line Image Quality on the Grain Leather

  • Park, Heung-Sup;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.24-31
    • /
    • 2007
  • This paper addresses factors of line image quality on grain leather printed via inkjet printer. Lines were printed onto coated leather media, and line width, edge blurriness, and edge raggedness were evaluated for line image quality. Various factors influenced to wetting and capillary wicking were studied and found out that wicking through capillary between fibers causes significant feathering on leather surface similar with pulp capillary in copy Paper. Polyurethane and acrylic resin coating resulted good image qualify by reducing capillary wicking. The mixture of polyurethane and acrylic resin applied on grain leather satisfied with both image quality and surface hand. $AllWrite^{TM}$ ink brought best results of image quality, comparing with $VeraPrint^{TM}$ ink and $JetWrite^{TM}$ ink.

High Concentrated Silver Nano Ink Formulation for the Inkjet Applications (잉크젯 응용기술을 위한 고농도 은 나노 잉크 배합)

  • Kim, Tae-Hoon;Cho, Hye-Jin;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.559-560
    • /
    • 2006
  • Inkjet Printing is very attractive method for direct patterns with no masks, In order to Achieve direct printing with nano metal, It is often necessary to print them with highly concentrated Ink We research the High Concentrated silver nano ink. Formulation which has a good thermal stability and storage stability and jet stability using a ethylene glycol ether. Normally Alcohol-based inks can be sensitive But High boiling point ethylene glycol ether base Ink is creating a stable meniscus and minimum maintenance issues. We are reaching a 50~60wt% high Silver Ink using a Hydrophilic Ag Nano powder. (30~50nm)

  • PDF

A Study on Droplet Formation from Piezo Inkjet Print Head (피에조 잉크젯 헤드에서 액적 토출 현상에 대한 연구)

  • Oh Se-Young;Lee Jung-Yong;Lee Yu-Seop;Chung Jae-Woo;Wee Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.1003-1011
    • /
    • 2006
  • Droplets are ejected onto a substrate through a nozzle by pushing liquids in flow channels of drop-on-demand devices. The behavior of ejection and formation of droplets is investigated to enhance the physical understanding of the hydrodynamics involved in inkjet printing. The free surface phenomenon of a droplet is described using $CFD-ACE^{TM}$ which employs the volume-of-fluid (VOF) method with the piecewise linear interface construction (PLIC). Droplet formation characteristics are analyzed in various flow regimes with different Ohnesorge numbers. The computational results show that the droplet formations are strongly dependent on the physical properties of working fluids and the inlet flow conditions. In addition, the wetting characteristics of working fluids on a nozzle influence the volume and velocity of a droplet produced in the device. This study may provide an insight into how a liquid droplet is formed and ejected in a piezoelectric inkjet printing device.

The present status and future aspects of the market for printed electronics (인쇄전자 산업시장의 현황과 전망)

  • Park, Jung-Yong;Park, Jae-Sue
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.2
    • /
    • pp.263-272
    • /
    • 2013
  • Printed electronics creates electrically functional devices by printing on variety of substrates. Printing typically uses common printing equipment or other low-cost equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography and inkjet. Compared to conventional manufacturing of microelectronics, printed electronics is characterized by simpler and more cost-effective fabrication of high and low volume products. Now there is huge effort towards printing many other more functional components, from displays to transistors to photovoltaic cells, using the full range of printing technologies - from inkjet to roll to roll analogue print techniques. The market for printed electronics will rise from $1.99 billion in 2010 to $55.10 billion in 2020. In 2030, this industry could be $300 billion - larger than the silicon semiconductor industry - from lighting to displays[8].

Electrohydrodynamic Inkjet Printing System for Ultrafine Patterning (초정밀 미세 패턴을 위한 전기 수력학 잉크젯 프린팅 시스템)

  • Roh, Hyeong-Rae;Go, Jung-Kook;Kwon, Kye-Si
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.9
    • /
    • pp.873-877
    • /
    • 2013
  • The application of inkjet technology has been broadening from home printers to manufacturing tools. Recently, there have been demands for high-resolution printing, especially in the field of printed electronics applications. To improve upon the conventional inkjet printing patterning method, electrohydrodynamic (EHD) inkjet technology has recently attracted attention because droplets smaller than the nozzle diameter can be ejected and materials with wider viscosity range can be used for jetting. In this study, an EHD jet printing system for fine patterning is presented. To print various patterns based on drop on demand printing, vector and raster printing algorithm are implanted in the printing software. Fine conductive patterns with line width of less than $7{\mu}m$ can be easily achieved via EHD jet using a nozzle with inner diameter of $8{\mu}m$.

Development of Inkjet Printing System for Printed Electronics (전자 인쇄를 위한 잉크젯 프린팅 시스템 개발)

  • Kwon, Kye-Si;Go, Jung-Kook;Kim, Jin-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1537-1541
    • /
    • 2010
  • An inkjet printing system for printed electronics was developed. In this study, a printing algorithm was mainly discussed. In order to print a pattern image at a target location, we developed a hardware and software algorithm for determining the distances between a substrate camera and the selected nozzles. We implemented a vector-printing algorithm where AutoCAD dxf file was used for XY motion control and for printing. We also developed printing method using bitmap images. The technical issues in using CAD drawings and bitmap images were discussed.

Fabrication of Flexible Temperature & Humidity Sensor Using Inkjet-printing Technology (잉크젯 프린팅 기술을 이용한 플렉서블 온·습도센서 개발)

  • Kye, Ji Won;Han, Dong Cheul;Shin, Han Jae;Kim, HeonGon;Lee, Wanghoon
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.119-123
    • /
    • 2015
  • This paper presents the inkjet-printed flexible temperature and humidity sensor(F-TH sensor) using PEDOT:PSS. The series, mesh and parallel type sensing element using PEDOT:PSS ink was printed on the overhead projector(OHP) film. The fabricated sensor of each structure has the temperature sensitivity of $140{\Omega}/^{\circ}C$, $29{\Omega}/^{\circ}C$ and $1.4{\Omega}/^{\circ}C$ with linearity, respectively. Also the fabricated sensor was not only possible to measure a temperature, but also to detect humidity. The humidity sensitivity of $400{\Omega}/%RH$, $3.4{\Omega}/%RH$ and $3{\Omega}/%RH$ with linearity, respectively. The fabricated F-TH sensor is expected for the various applications such as electronic devices, bio-healthcare, industrial field.