• Title/Summary/Keyword: Ink Jet

Search Result 241, Processing Time 0.031 seconds

Fabrication of the Micro Nozzle Arrays on a Stainless Steel Sheet Metal by Using Combined Micro Press and Surface Finishing Process (복합공정을 이용한 스테인레스 박판 마이크로 노즐 어레이 제작)

  • Park S.J.;Yoo Y.S.;Jang H.S.;Kim Y.T.;Kim S.Y.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1294-1298
    • /
    • 2005
  • In this study, combined micro press and surface finishing process are proposed to fabricate the micro nozzle array on a stainless steel sheet metal. In micro hole punching process the burr occurs inevitably, but the burr must be minimized in order to improve the quality and accuracy of the product. For this reason, subsequent magnetic field-assisted finishing technique is applied to remove the burr which exists around the nozzles for ink-jet printer head and proved to be a feasible for deburring by experiment. The deburring characteristics of sheet metals were investigated changing with polishing time and magnetic abrasive size. After the deburring, the burr size has remarkably reduced and roundness of the hole also has improved.

  • PDF

The Mobility Variation of OTFTs with the Number of TIPS-pentacene Droplets and Substrate Temperature in Ink Jet Printing (TIPS-pentacene의 잉크젯 인쇄공정에서 액적의 수와 기판 온도에 따른 OTFTs의 전계이동도 변화)

  • Kwon, Dong-Hoon;Park, Jin Seok;Song, Chung-Kun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.468-471
    • /
    • 2013
  • In this paper, we analyzed the effects of the number of TIPS-pentacene droplets and also the substrate temperature on the performance of OTFTs. As the number of the droplets increased, the mobility increased and reached the peak value and then reduced at the all temperatures. The peak mobility was $0.14{\pm}0.03cm^2/V{\cdot}sec$ at 3 droplets and $41^{\circ}C$, $0.19{\pm}0.02cm^2/V{\cdot}sec$ at 4 droplets and $46^{\circ}C$, and $0.35{\pm}0.10cm^2/V{\cdot}sec$ at 7 droplets and $51^{\circ}C$. The reason of existence of peak mobility can be found in matching the evaporation of solvent with the velocity of crystal formation. When two parameters were properly matched, the mobility produced the highest.

Numerical Study on Bubble Growth and Droplet Ejection in a Bubble Inkjet Printer (버블 잉크젯에서의 기포성장 및 액적분사에 관한 수치적 연구)

  • Suh, Young-Ho;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1107-1116
    • /
    • 2006
  • The droplet ejection process driven by an evaporating bubble in a thermal inkjet printhead is investigated by numerically solving the conservation equations for mass, momentum and energy. The phase interfaces are tracked by a level set method which is modified to include the effect of phase change at the interface and extended for multiphase flows with irregular solid boundaries. The compressibility effect of a bubble is also included in the analysis to appropriately describe the bubble expansion behaviour associated with the high pressure caused by bubble nucleation. The whole process of bubble growth and collapse as well as droplet ejection during thermal inkjet printing is simulated without employing a simplified semi-empirical bubble growth model. Based on the numerical results, the jet breaking and droplet formation behaviour is observed to depend strongly on the bubble growth and collapse pattern. Also, the effects of liquid viscosity, surface tension and nozzle geometry are quantified from the calculated bubble growth rate and ink droplet ejection distance.

A study on color characteristics of Multi-color functional Rapid Prototypes Using laser stereolithography (광조형을 이용한 다색 기능성 시작품의 색상특성에 관한 연구)

  • 조진구;정해도;손재혁;임용관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.824-828
    • /
    • 2000
  • As production cycle has become more and more shorter, the demand of rapid prototyping technology has increased largely. There are many methods for rapid prototyping technology, such as SLA. SLS, FDM. INK JET, LOM and so on. Of all methods, SLA has been most widely used for fabricating precision parts. But products manufactured by this method have limitation of single color and single material. So the principal purpose of this study is to overcome the limit of single color product. If the internal structure of manufactured product is visible with multi-color characteristic, it is possible to check easily the designed model with reality. In order to give multi-color characteristic to the product, photocurable resin mixed with pigment is used in this study. First, transparency of photocurable resin without pigment is evaluated, and then color characteristic and curing characteristic of the mixture is evaluated changing mixing ratio. Through the basic experiments, it becomes possible to fabricate multi-color 3D prototype without assembly.

  • PDF

Pentacene Thin-Film Transistor with PEDOT:PSS S/D Electrode by Ink-jet Printing Method (잉크젯 프린팅 방법을 이용한 Pentacene 박막 트랜지스터의 제작 및 특성 분석)

  • Kim, Jae-Kyoung;Kim, Jung-Min;Lee, Hyun Ho;Yoon, Tae-Sik;Kim, Yong-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1277-1278
    • /
    • 2008
  • Pentacene 박막 트랜지스터의 소스/드레인 전극을 폴리머인 Poly(3,4-ethylene dioxythiophene) poly(styrenesulfonate) (PEDOT:PSS)를 사용하여 잉크젯 프린팅 방법으로 제작하였다. 펜타신 박막 트랜지스터는 열 증착법을 사용하여 폴리며 기판위에 100nm의 두께로 증착하였다. 게이트 절연막은 $SiO_2$ 위에 Polymethly Methacrylate (PMMA)를 증착시킨 double layer를 사용하였다. PMMA 위에 증착시킨 pentacene 결정립이 $SiO_2$ 위에 증착한 pentacene 결정립 보다 크게 성장하였고, double layer의 절연막을 씀으로 인해 게이트 누설 전류가 감소함을 보였다. Pentacene 증착 온도에 따른 결정립 크기를 비교하여 가장 적절한 온도를 찾았다. 프린팅 방법을 사용하여 만든 박막 트랜지스터는 전계효과 이동도가 ${\mu}_{FET}=0.023cm^2/Vs$ 이고, 문턱이전 기울기 S.S=0.49V/dec, 문턱전압 $V_{th}=-18V$, $I_{on}/I_{off}$ 전류비 >$10^3$의 전기적 특성을 보였다.

  • PDF

A Study on Improvement of Interfacial Adhesion Energy of Inkjet-printed Ag Thin film on Polyimide by CF4 Plasma Treatment (CF4플라즈마 처리에 의한 잉크젯 프린팅 Ag박막과 폴리이미드 사이의 계면파괴에너지 향상에 관한 연구)

  • Park, Sung-Cheol;Cho, Su-Hwan;Jung, Hyun-Cheol;Joung, Jae-Woo;Park, Young-Bae
    • Korean Journal of Materials Research
    • /
    • v.17 no.4
    • /
    • pp.215-221
    • /
    • 2007
  • The effect of $CF_4$ plasma treatment condition on the interfacial adhesion energy of inkjet printed Ag/polyimide system is evaluated from $180^{\circ}$ peel test by calculating the plastic deformation energy of peeled metal films. Interfacial fracture energy between Ag and as-received polyimide was 5.5 g/mm. $CF_4$ plasma treatment on the polyimide surface enhanced the interfacial fracture energy up to 17.6 g/mm. This is caused by the increase in the surface roughness as well as the change in functional group of the polyimide film due to $CF_4$ plasma treatment on the polyimide surface. Therefore, both the mechanical interlocking effect and the chemical bonding effect are responsible for interfacial adhesion improvement in ink jet printed Ag/polyimide systems.

Fabrication of Flexible OTFT Array with Printed Electrodes by using Microcontact and Direct Printing Processes

  • Jo, Jeong-Dai;Lee, Taik-Min;Kim, Dong-Soo;Kim, Kwang-Young;Esashi, Masayoshi;Lee, Eung-Sug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.155-158
    • /
    • 2007
  • Printed organic thin-film transistor(OTFT) to use as a switching device for an organic light emitting diode(OLED) were fabricated in the microcontact printing and direct printing processes at room temperature. The gate electrodes($5{\mu}m$, $10{\mu}m$, and $20{\mu}m$) of OTFT was fabricated using microcontact printing process, and source/drain electrodes ($W/L=500{\mu}m/5{\mu}m$, $500{\mu}m/10{\mu}m$, and $500{\mu}m/20{\mu}m$) was fabricated using direct printing process with hard poly(dimethylsiloxane)(h-PDMS) stamp. Printed OTFT with dielectric layer was formed using special coating system and organic semiconductor layer was ink-jet printing process. Microcontact printing and direct printing processes using h-PDMS stamp made it possible to fabricate printed OTFT with channel lengths down to $5{\mu}m$, and reduced the process by 20 steps compared with photolithography. As results of measuring he transfer characteristics and output characteristics of OTFT fabricated with the printing process, the field effect characteristic was verified.

  • PDF

Large-Sized AMOLED for TV Application

  • Chu, Chang-Woong;Chung, Jin-Koo;Lee, Dong-Won;Ha, Jae-Kook;Choi, Jun-Ho;Lee, Sung-Soo;Lee, Joo-Hyeon;Lee, Sang-Pil;Shin, Sung-Tae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.39-42
    • /
    • 2007
  • Since the scalability of OLED process is crucial factor for large-sized TV manufacturing, various technologies are reviewed based on the published information. Despite of recent technology advancement enabling high color purity, large-sized AMOLED, a lot of problems to solve still exist to enter the large-sized display market. Here, Samsung will discuss what has to be concerned for large panel and how far the OLED technologies need to go more for the large-sized AMOLED TV marketplace.

  • PDF

Additive Manufacturing of Various Ceramic Composition Using Inkjet Printing Process (잉크젯 프린팅을 이용한 연속 조성 세라믹 화합물 구조체 형성)

  • Park, Jae-Hyeon;Choi, Jung-Hoon;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.627-635
    • /
    • 2020
  • 3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.

Pentacene Thin Film Transistors with Various Polymer Gate Insulators

  • Kim, Jae-Kyoung;Kim, Jung-Min;Yoon, Tae-Sik;Lee, Hyun-Ho;Jeon, D.;Kim, Yong-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.118-122
    • /
    • 2009
  • Organic thin film transistors with a pentacene active layer and various polymer gate insulators were fabricated and their performances were investigated. Characteristics of pentacene thin film transistors on different polymer substrates were investigated using an atomic force microscope (AFM) and x-ray diffraction (XRD). The pentacene thin films were deposited by thermal evaporation on the gate insulators of various polymers. Hexamethyldisilazane (HMDS), polyvinyl acetate (PVA) and polymethyl methacrylate (PMMA) were fabricated as the gate insulator where a pentacene layer was deposited at 40, 55, 70, 85, 100 oC. Pentacene thin films on PMMA showed the largest grain size and least trap concentration. In addition, pentacene TFTs of top-contact geometry are compared with PMMA and $SiO_2$ as gate insulators, respectively. We also fabricated pentacene TFT with Poly (3, 4-ethylenedioxythiophene)-Polysturene Sulfonate (PEDOT:PSS) electrode by inkjet printing method. The physical and electrical characteristics of each gate insulator were tested and analyzed by AFM and I-V measurement. It was found that the performance of TFT was mainly determined by morphology of pentacene rather than the physical or chemical structure of the polymer gate insulator