DOI QR코드

DOI QR Code

The Mobility Variation of OTFTs with the Number of TIPS-pentacene Droplets and Substrate Temperature in Ink Jet Printing

TIPS-pentacene의 잉크젯 인쇄공정에서 액적의 수와 기판 온도에 따른 OTFTs의 전계이동도 변화

  • Kwon, Dong-Hoon (Department of Electronics Engineering, Dong-A University) ;
  • Park, Jin Seok (Department of Electronics Engineering, Dong-A University) ;
  • Song, Chung-Kun (Department of Electronics Engineering, Dong-A University)
  • Received : 2013.05.16
  • Accepted : 2013.05.24
  • Published : 2013.06.01

Abstract

In this paper, we analyzed the effects of the number of TIPS-pentacene droplets and also the substrate temperature on the performance of OTFTs. As the number of the droplets increased, the mobility increased and reached the peak value and then reduced at the all temperatures. The peak mobility was $0.14{\pm}0.03cm^2/V{\cdot}sec$ at 3 droplets and $41^{\circ}C$, $0.19{\pm}0.02cm^2/V{\cdot}sec$ at 4 droplets and $46^{\circ}C$, and $0.35{\pm}0.10cm^2/V{\cdot}sec$ at 7 droplets and $51^{\circ}C$. The reason of existence of peak mobility can be found in matching the evaporation of solvent with the velocity of crystal formation. When two parameters were properly matched, the mobility produced the highest.

Keywords

References

  1. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science, 290, 2123 (2000). https://doi.org/10.1126/science.290.5499.2123
  2. D. Kim, S. Jeong, S. Lee, B. K. Park, and J. Moon, Thin Solid Films, 515, 7692 (2007). https://doi.org/10.1016/j.tsf.2006.11.141
  3. S. H. Lee, M. H. Choi, S. H. Han, D. J. Choo, J. Jang, and S. K. Kwon, Organic Electronics, 9, 721 (2008). https://doi.org/10.1016/j.orgel.2008.05.002
  4. S. K. Park, J. Anthony, and T. N. Jackson, Int. Electron Device Meet. Tech. Dig., 126, 15322 (2004).
  5. H. Moon, R. Zeis, E. Brokent, C. Besnard, A. J. Lovinger, T. Siegrist, C. Kloc, and Z. Bao, J. Am. Chem. Soc., 126, 15322 (2004). https://doi.org/10.1021/ja045208p
  6. K. Ito, T. Suzuki, Y. Sakamoto, D. Kubota, Y. Inoue, F. Sato, and S. Tokito, Angew. Chem., 42, 1191 (2003).
  7. G. S. Ryu, M. W. Lee, S. H. Jeong, and C. K. Song, JJAP, 51, 051601 (2012).
  8. C. S. Kim, S. Lee, E. D. Gomez, J. E. Anthony, and Y. Loo, Appl. Phys. Lett., 93, 103302 (2008). https://doi.org/10.1063/1.2979691
  9. X. Li, W. T. T. Smaal, C. Kjellander, B. Putten, K. Gualandris, E. C. P. Smits, J. Anthony, D. J. Broer, P. W. M. Blom, J. Genoe, and G. Gelinck, Organic Electronics, 12, 1319 (2011). https://doi.org/10.1016/j.orgel.2011.04.020
  10. K. D. Kim and C. K. Song, JJAP, 49, 111603 (2010).
  11. M. W. Lee, G. S. Ryu, Y. U. Lee, C. Pearson, M. C. Petty, and C. K. Song, Microelecrtonic Engineering, 95, 1 (2012). https://doi.org/10.1016/j.mee.2012.01.006