• Title/Summary/Keyword: Injured cell

Search Result 199, Processing Time 0.03 seconds

Comparison of Selective Media for Isolation and Detection of Shigella spp. from Foods (식품으로부터 쉬겔라 검출을 위한 분리배지 비교)

  • In, Ye-Won;Ha, Su-Jeong;Oh, Se-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.7
    • /
    • pp.1025-1031
    • /
    • 2011
  • The objective of this study was to compare the performances of conventional microbiological media used in isolation of Shigella spp. from foods. Total of six selective media, including MacConkey agar (MAC), Salmonella Shigella agar (SSA), desoxycholate citrate agar (DCA), xylose lysine desoxycholate agar (XLD), hektoen enteric agar (HEA), and CHROMagar, were tested. MAC showed almost the same colony numbers as compared to tryptic soy agar (TSA) while DCA showed significantly lower colony numbers when cultivated Shigella spp. was counted in each medium. In a food recovery test with beef, pork and shrimp, S. sonnei recovered well on CHROMagar (p<0.05). With lettuce and cabbage, S. sonnei displayed significantly significant recovery (p<0.05) on SSA in comparison with other selective media. Heat-injured cells recovered well on MAC and SSA. In a specificity test using Enterobacteriaceae strains, HEA was identified as having the highest specificity among the tested media. However, Morganella spp. could not be differentiated from Shigella spp. on any of the tested selective media. Shigella spp. precluded the possibility of isolation from foods by a single 'best' selective medium. Consequently, a combination of complementary selective media or selection of appropriate media according to cell conditions must be considered for comprehensive isolation.

Antiapoptotic effects of Phe140Asn, a novel human granulocyte colony-stimulating factor mutant in H9c2 rat cardiomyocytes

  • Chung, Hee Kyoung;Ko, Eun Mi;Kim, Sung Woo;Byun, Sung-June;Chung, Hak-Jae;Kwon, Moosik;Lee, Hwi-Cheul;Yang, Byoung-Chul;Han, Deug-Woo;Park, Jin-Ki;Hong, Sung-Gu;Chang, Won-Kyong;Kim, Kyung-Woon
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.742-747
    • /
    • 2012
  • Granulocyte colony-stimulating factor (G-CSF) is used for heart failure therapy and promotes myocardial regeneration by inducing mobilization of bone marrow stem cells to the injured heart after myocardial infarction; however, this treatment has one weakness in that its biological effect is transient. In our previous report, we generated 5 mutants harboring N-linked glycosylation to improve its antiapoptotic activities. Among them, one mutant (Phe140Asn) had higher cell viability than wild-type hG-CSF in rat cardiomyocytes, even after treatment with an apoptotic agent ($H_2O_2$). Cells treated with this mutant significantly upregulated the antiapoptotic proteins, and experienced reductions in caspase 3 activity and PARP cleavage. Moreover, the total number of apoptotic cells was dramatically lower in cultures treated with mutant hG-CSF. Taken together, these results suggest that the addition of an N-linked glycosylation was successful in improving the antiapoptotic activity of hG-CSF, and that this mutated product will be a feasible therapy for patients who have experienced heart failure.

Neuroprotective Effects of Sacral Epidural Neuromodulation Following Spinal Cord Injury : An Experimental Study in Rats

  • Lee, Chang-Hyun;Hyun, Seung-Jae;Yoon, Cheol-Yong;Lim, Jae-Young;Jahng, Tae-Ahn;Kim, Ki-Jeong
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.509-512
    • /
    • 2012
  • Objective : The purpose of this study is to evaluate neuroprotective effect of sacral neuromodulation in rat spinal cord injury (SCI) model in the histological and functional aspects. Methods : Twenty-one female Sprague Dawley rats were randomly divided into 3 groups : the normal control group (CTL, n=7), the SCI with sham stimulation group (SCI, n=7), and the SCI with electrical stimulation (SCI+ES, n=7). Spinal cord was injured by dropping an impactor from 25 mm height. Sacral nerve electrical stimulation was performed by the following protocol : pulse duration, 0.1 ms; frequency, 20 Hz; stimulation time, 30 minutes; and stimulation duration, 4 weeks. Both locomotor function and histological examination were evaluated as scheduled. Results : The number of anterior horn cell was $12.3{\pm}5.7$ cells/high power field (HPF) in the CTL group, $7.8{\pm}4.9$ cells/HPF in the SCI group, and $6.9{\pm}5.5$ cells/HPF in the SCI+ES group, respectively. Both the SCI and the SCI+ES groups showed severe loss of anterior horn cells and myelin fibers compared with the CTL group. Cavitation and demyelinization of the nerve fibers has no significant difference between the SCI group and the SCI+ES group. Cavitation of dorsal column was more evident in only two rats of SCI group than the SCI+ES group. The locomotor function of all rats improved over time but there was no significant difference at any point in time between the SCI and the SCI+ES group. Conclusion : In a rat thoracic spinal cord contusion model, we observed that sacral neuromodulation did not prevent SCI-induced myelin loss and apoptosis.

INVASION OF ALVEOLAR BONE INTO ROOT CANAL AFTER TRAUMATIC INJURY (외상 후 근관내로의 치조골 함입)

  • Im, Ye-Jin;Kim, Young-Jin;Kim, Hyun-Jung;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.38 no.4
    • /
    • pp.399-406
    • /
    • 2011
  • Traumatic injury on tooth occurs frequently among trauma patients, and mainly occurs on tooth with premature roots which influences pulp tissue, periodontal ligament, alveolar bone, and Hertwig's epithelial root sheath. According to the degree of trauma, a number of kinds of healing process can be observed, such as complete re-vascularization of pulp, root canal obliteration, growth suspension of root apex, and invasion of alveolar bone into root canal, and there can be some complications such as necrotic change of inflammatory root resorption and partial pulp necrosis due to pulp necrosis toward complete necrosis. In this clinical case, 3 patients who had traumatic injury showed root growth suspension and alveolar bone invasion into root canal due to proliferation of periodontal ligament cell and osteocyte at the base of extraction socket into pulp chamber because of the injury on Hertwig's epithelial root sheath. If intrusion of alveolar bone into root canal due to injury on Hertwig's epithelial root sheath after having traumatic injury doesn't show any complication, the pulp may be considered to have normal vitality and doesn't need any further treatment, therefore differential diagnosis is very necessary. However, it may be accompanied with suspension of root growth, therefore, additional trauma during the treatment of injured tooth should not be applied.

Morphological and Anatomical Response of Rice and Barnyardgrass to Herbicides under Various Cropping Patterns. - III. Response to Propanil (재배양식(栽培樣式)에 따른 수종(數種) 제초제(除草劑)에 대한 벼와 피의 해부형태적(解剖形態的) 반응차이(反應差異) - III. Propanil 에 대한 반응차이(反應差異))

  • Chon, S.U.;Guh, J.O.;Kuk, Y.I.
    • Korean Journal of Weed Science
    • /
    • v.16 no.3
    • /
    • pp.237-244
    • /
    • 1996
  • Propanil [N-(3,4-dichlorophenyl) propanamide] which was applied at 4,200g ai/hapostemergence 7 days after seeding or transplanting, completely reduced the growth of shoot and root of barnyardgrass at 100% under dry condition while plant height, root length and shoot fresh weight of barnyardgrass at 63, 40 and 78%, respectively under water condition. On the other hand, the herbicide did not affect the growth of shoot and root of rice grown under water condition and transplanting condition, but reduced the plant height, root length and shoot fresh weight of broadcast rice on soil at 24, 18 and 28%, respectively, under dry condition. Microscopically, the epidermal cells of treated-barnyardgrasses under both conditions were severely constricted, chloroplasts in the cells of vascular bunble sheath were partially lacked, and mesophyll cells were often ruptured, whereas those of treated-rice were not affected. Histological observations showed that propanil reduced the thickness of leaf blade of barnyardgrass under both conditions at 36-48% due to mainly reduction and constriction of mesophyll cell, while it did not affect or even increased the thickness of leaves of rice under all conditions compared to control. These results indicate that broadcast rice on soil were more injured than drilled rice in soil under dry condition, however, in the other tested conditions ricer were not affected.

  • PDF

Single-Channel Recording of TASK-3-like $K^+$ Channel and Up-Regulation of TASK-3 mRNA Expression after Spinal Cord Injury in Rat Dorsal Root Ganglion Neurons

  • Jang, In-Seok;La, Jun-Ho;Kim, Gyu-Tae;Lee, Jeong-Soon;Kim, Eun-Jin;Lee, Eun-Shin;Kim, Su-Jeong;Seo, Jeong-Min;Ahn, Sang-Ho;Park, Jae-Yong;Hong, Seong-Geun;Kang, Da-Won;Han, Jae-Hee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.245-251
    • /
    • 2008
  • Single-channel recordings of TASK-1 and TASK-3, members of two-pore domain $K^+$ channel family, have not yet been reported in dorsal root ganglion (DRG) neurons, even though their mRNA and activity in whole-cell currents have been detected in these neurons. Here, we report single-channel kinetics of the TASK-3-like $K^+$ channel in DRG neurons and up-regulation of TASK-3 mRNA expression in tissues isolated from animals with spinal cord injury (SCI). In DRG neurons, the single-channel conductance of TASK-3-like $K^+$ channel was $33.0{\pm}0.1$ pS at - 60 mV, and TASK-3 activity fell by $65{\pm}5%$ when the extracellular pH was changed from 7.3 to 6.3, indicating that the DRG $K^+$ channel is similar to cloned TASK-3 channel. TASK-3 mRNA and protein levels in brain, spinal cord, and DRG were significantly higher in injured animals than in sham-operated ones. These results indicate that TASK-3 channels are expressed and functional in DRG neurons and the expression level is up-regulated following SCI, and suggest that TASK-3 channel could act as a potential background $K^+$ channel under SCI-induced acidic condition.

The Effect of Direct Functional Magnetic Stimulation of the Lesion on Functional Motor Recovery in Spinal Cord Injured Rat (척수손상 흰 쥐의 운동기능 회복에 미치는 손상부위 직접자극을 통한 기능적 자기자극치료 효과)

  • Cho, Yun-Woo;Kim, Su-Jeong;Park, Hea-Woon;Seo, Jeong-Min;Hwang, Se-Jin;Jang, Sung-Ho;Lee, Dong-Gyu;Ahn, Sang-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Purpose: The purpose of this study was to determine the effect of direct functional magnetic stimulation (FMS) of affected spinal cord on motor recovery following spinal cord injury in rats. Methods: After a contusion injury at the spinal level T9 using an NYU Impactor, functional magnetic stimulation was delivered by a magnetic stimulator through a round prototype coil (7 cm in diameter). Stimulation parameters were set as follows: repetition rate = 50 Hz (stimulus intensity 100% = 0.18 T), stimulation time = 20 min. Functional magnetic stimulation was administered twice a day, 5 days per week for 8 weeks starting 4 days after spinal cord injury. Functional magnetic stimulationwas delivered directly to the affected spinal cord. Outcomes of locomotor performance were assessed by the Basso Beattie Bresnahan (BBB) locomotor rating scale and by an inclined plane test weekly for 8 weeks. Results: In the BBB test, hindlimb motor function in the Functional magnetic stimulation group improved significantly more compared to the control group at 3, 4, 6, 7, and 8 weeks (p<0.05). In the inclined plane test, the angle of the plane in the functional magnetic stimulation group increased significantly more compared to the control group at 4, 5, 7, and 8 weeks (p<0.05). Conclusion: Our results demonstrate that direct Functional magnetic stimulation of the lesional site may have beneficial effects on motor improvement after spinal cord injury.

Engraftment of Intraperitoneally Injected Bone Marrow Cells to Newborn Mice Injected with an Angiogenesis Inhibitor (혈관생성 억제제를 주사한 마우스 모델에서의 골수 세포의 복강 내 주입 후 생착)

  • Cho, Su-Jin;Ju, Sun-Young;Woo, So-Youn;Kang, Hyoung-Jin;Ahn, Hyo-Seop;Ryu, Kyung-Ha;Park, Eun-Ae
    • Neonatal Medicine
    • /
    • v.15 no.1
    • /
    • pp.22-31
    • /
    • 2008
  • Purpose : Bronchopulmonary dysplasia (BPD) is characterized by arrested vascular and alveolar growth in the premature lung. Considering the consequences of arrested lung growth, the idea of administering bone marrow cells to enhance the inborn repair mechanism is promising as this may reduce the morbidity and mortality of BPD. We followed enhanced green fluorescent protein (EGFP)-labeled bone marrow cells (BMC) injected intraperitoneally into non-EGFP mice in order to determine their fate after transplantation. Methods : An angiogenesis inhibitor, SU1498, was injected subcutaneously on day 3 in non-EGFP C57BL/6 newborn mice to create a model of arrested alveolar development. On the following day, $1{\times}10^6$ BMCs isolated from major histocompatibility complex (MHC)- matched syngenic EGFP mice were injected intraperitoneally to non-EGFP BPD mice. Morphometric analysis, immunostaining, and confocal microscopy were performed to determine the fate of EGFP-positive stem cells in the injured lung. Results : SU1498 injection reduced alveolar surface area and mean alveolar volume in newborn mice. BMC injection resulted in recovery of lung structure comparable to controls. EGFP-positive BMCs were identified in the lungs of the recipient mice after intraperitoneal injection. The injected EGFP cells were co-stained with endothelial and epithelial cells of the developing lung as determined by confocal microscopy. Conclusion : Our results illustrated that EGFP-positive BMCs engrafted and trans-differentiated into epithelial and endothelial cells after intraperitoneal injection in a mouse model of arrested alveolar development.

Effects of Chilbokyeum on the Cerebral Cortex Neuron injured by Glucose Oxidase (칠복음(七福飮)이 Glucose Oxidase에 의해 손상(損傷)된 대뇌피질(大腦皮質) 신경세포(神經細胞)에 미치는 영향(影響))

  • Choi, Kong-Han;Park, Seung-Taeck;Ryu, Do-Gon;Choi, Min-Ho;Um, Sang-Sub;Hea, Jin-Young;Kang, Sung-Do;Go, Jeong-Soo;Sou, Eui-Suk;Sung, Yeun-Kyung;Cho, Nam-Su;Lee, Chun-Woo;Whang, Il-Taeck;Sun, Sung-Kyu;Ryu, Young-Su
    • Journal of Oriental Physiology
    • /
    • v.14 no.2 s.20
    • /
    • pp.199-208
    • /
    • 1999
  • As the average life span have been lengthened and the rate of senile population have been raised, chronic degenerative diseases incident to aging has been increased rapidly and become a social problem. With this social background, recently, the facts that oxygen radicals(OR) have toxic effects on Central Nervous System and Peripheral Nervous System and cause neuropathy such as Parkinson's Disease, Alzheimer Disease have been turned out, and accordingly lots of studies on the mechanism of the toxic effects of OR on nerves, the diseases caused by OR and the approaches to curing the diseases have been made. The purpose of this study is to examine the toxic effects caused by Glucose Oxidase(GO) and the effects of herbal extracts such as Chilbokyeum(CBY) on the treatment of the toxic effects. For this purpose, experiments with the cultured cell from the cerebrums of new born mice were done. The results of these experiments were as follows. 1. GO, a oxygen radical, decreased the survival rate of the cultured cells on NR assay and MTT assay 2. GO, a oxygen radical, increased lipid peroxidation and the amount of LDH. 3. CBY have efficacy of decreasing lipid peroxidation. 4. CBY have efficacy of decreasing the amount of LOH. From the above results, It is concluded that Chilbokyeum has marked efficacy as a treatment for the damages caused in the GO-mediated oxidative process. And Chilbokyeum is thought to have certain pharmacological effects on controlling over aging and treating Dementia. Further clinical study of this pharmacological effects of Chilbokyeum should be complemented.

  • PDF

Effects of Acori Rhizoma water extract on the Cerebral Cortex Neuron injured by Glucose Oxidase (석창포(石菖蒲) 전탕액(煎湯液)이 Glucose Oxidase에 의해 손상(損傷)된 대뇌피질(大腦皮質) 신경세포(神經細胞)에 미치는 영향(影響))

  • Choi, Kong-Han;Park, Seung-Taeck;Ryu, Do-Gon;Choi, Min-Ho;Hea, Jin-Young;Kang, Sung-Do;Go, Jeong-Soo;Yang, Sang-cheal;Sung, Yeun-Kyung;Cho, Nam-Su;Lee, Chun-Woo;Sou, Eui-Suk;Ryu, Young-Su
    • Journal of Oriental Physiology
    • /
    • v.14 no.2 s.20
    • /
    • pp.117-126
    • /
    • 1999
  • The purpose of this study is to examine the toxic effects caused by Glucose Oxidase(GO) and the effects of herbal extracts such as Acori Rhizoma(AR) on the treatment of the toxic effects. For this purpose, experiments with the cultured cell from the cerebrums of new born mice were done. The results of these experiments were as follows. 1. GO, a oxygen radical, decreased the survival rate of the cultured cells on NR assay and MTT assay. 2. GO, a oxygen radical, decreased the amount of neurofilaments and total protein. 3. AR have efficacy of increasing the amount of neurofilament. 4. AR have efficacy of increasing the amount of total protein. From the above results, It is concluded that AR has marked efficacy as a treatment for the damages caused in the GO-mediated oxidative process. And AR is thought to have certain pharmacological effects on controlling over aging. Further clinical study of this pharmacological effects of AR should be complemented.

  • PDF